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ABSTRACT
Some queries cannot be answered by machines only. Processing
such queries requires human input for providing information that is
missing from the database, for performing computationally difficult
functions, and for matching, ranking, or aggregating results based
on fuzzy criteria. CrowdDB uses human input via crowdsourcing
to process queries that neither database systems nor search engines
can adequately answer. It uses SQL both as a language for pos-
ing complex queries and as a way to model data. While CrowdDB
leverages many aspects of traditional database systems, there are
also important differences. Conceptually, a major change is that
the traditional closed-world assumption for query processing does
not hold for human input. From an implementation perspective,
human-oriented query operators are needed to solicit, integrate and
cleanse crowdsourced data. Furthermore, performance and cost de-
pend on a number of new factors including worker affinity, train-
ing, fatigue, motivation and location. We describe the design of
CrowdDB, report on an initial set of experiments using Amazon
Mechanical Turk, and outline important avenues for future work in
the development of crowdsourced query processing systems.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems

General Terms
Human Factors, Languages, Design, Performance

1. INTRODUCTION
Relational database systems have achieved widespread adoption,

not only in the business environments for which they were origi-
nally envisioned, but also for many other types of structured data,
such as personal, social, and even scientific information. Still, as
data creation and use become increasingly democratized through
web, mobile and other technologies, the limitations of the tech-
nology are becoming more apparent. RDBMSs make several key
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assumptions about the correctness, completeness and unambiguity
of the data they store. When these assumptions fail to hold, rela-
tional systems will return incorrect or incomplete answers to user
questions, if they return any answers at all.

1.1 Power to the People
One obvious situation where existing systems produce wrong an-

swers is when they are missing information required for answering
the question. For example, the query:

SELECT market_capitalization FROM company
WHERE name = "I.B.M.";

will return an empty answer if the company table instance in the
database at that time does not contain a record for “I.B.M.”. Of
course, in reality, there are many reasons why such a record may be
missing. For example, a data entry mistake may have omitted the
I.B.M. record or the record may have been inadvertently deleted.
Another possibility is that the record was entered incorrectly, say,
as “I.B.N.”

Traditional systems can erroneously return an empty result even
when no errors are made. For example, if the record was entered
correctly, but the name used was “International Business Machines”
rather than “I.B.M.” This latter “entity resolution” problem is not
due to an error but is simply an artifact of having multiple ways to
refer to the same real-world entity.

There are two fundamental problems at work here. First, rela-
tional database systems are based on the “Closed World Assump-
tion”: information that is not in the database is considered to be
false or non-existent. Second, relational databases are extremely
literal. They expect that data has been properly cleaned and val-
idated before entry and do not natively tolerate inconsistencies in
data or queries.

As another example, consider a query to find the best among a
collection of images to use in a motivational slide show:

SELECT image FROM picture
WHERE topic = "Business Success"
ORDER BY relevance LIMIT 1;

In this case, unless the relevance of pictures to specific topics has
been previously obtained and stored, there is simply no good way
to ask this question of a standard RDBMS. The issue here is one
of judgement: one cannot reliably answer the question simply by
applying relational operators on the database.

All of the above queries, however, while unanswerable by to-
day’s relational database systems, could easily be answered by peo-
ple, especially people who have access to the Internet.



1.2 CrowdDB
Recently, there has been substantial interest (e.g. [4, 6, 28])

in harnessing Human Computation for solving problems that are
impossible or too expensive to answer correctly using computers.
Microtask crowdsourcing platforms such as Amazon’s Mechanical
Turk (AMT)[3] provide the infrastructure, connectivity and pay-
ment mechanisms that enable hundreds of thousands of people to
perform paid work on the Internet. AMT is used for many tasks that
are easier for people than computers, from simple tasks such as la-
beling or segmenting images and tagging content to more complex
tasks such as translating or even editing text.

It is natural, therefore, to explore how to leverage such human
resources to extend the capabilities of database systems so that
they can answer queries such as those posed above. The approach
we take in CrowdDB is to exploit the extensibility of the iterator-
based query processing paradigm to add crowd functionality into a
DBMS. CrowdDB extends a traditonal query engine with a small
number of operators that solicit human input by generating and sub-
miting work requests to a microtask crowdsourcing platform.

As query processing elements, people and computers differ in
fundamental ways. Obviously, the types of tasks at which each ex-
cel are quite different. Also, people exhibit wider variability, due
to schedules such as nights, weekends and holidays, and the vast
differences in expertise, diligence and temperament among people.
Finally, as we discuss in the following sections, in a crowdsourcing
system, the relationship between job requesters and workers ex-
tends beyond any one interaction and evolves over time. Care must
be taken to properly maintain that relationship.

Crowdsourced operators must take into consideration the talents
and limitations of human workers. For example, while it has been
shown that crowds can be “programmed” to execute classical algo-
rithms such as Quicksort on well-defined criteria [19], such a use
of the crowd is neither performant nor cost-efficient.

Consider the example queries described in Section 1.1. Correctly
answering these queries depends on two main capabilities of human
computation compared to traditional query processing:

Finding new data - recall that a key limitation of relational tech-
nology stems from the Closed World Assumption. People, on the
other hand, aided by tools such as search engines and reference
sources, are quite capable of finding information that they do not
have readily at hand.

Comparing data - people are skilled at making comparisons that
are difficult or impossible to encode in a computer algorithm. For
example, it is easy for a person to tell, if given the right context,
if “I.B.M.” and “International Business Machines” are names for
the same entity. Likewise, people can easily compare items such
as images along many dimensions, such as how well the image
represents a particular concept.

Thus, for CrowdDB, we develop crowd-based implementations
of query operators for finding and comparing data, while relying
on the traditional relational query operators to do the heavy lifting
for bulk data manipulation and processing. We also introduce some
minimal extensions to the SQL data definition and query languages
to enable the generation of queries that involve human computation.

1.3 Paper Overview
Our approach has four main benefits. First, by using SQL we

create a declarative interface to the crowd. We strive to maintain
SQL semantics so that developers are presented with a known com-
putational model. Second, CrowdDB provides Physical Data Inde-
pendence for the crowd. That is, application developers can write
SQL queries without having to focus on which operations will be
done in the database and which will be done by the crowd. Existing

SQL queries can be run on CrowdDB, and in many cases will re-
turn more complete and correct answers than if run on a traditional
DBMS. Third, as we discuss in subsequent sections, user interface
design is a key factor in enabling questions to be answered by peo-
ple. Our approach leverages schema information to support the
automatic generation of effective user interfaces for crowdsourced
tasks. Finally, because of its declarative programming environment
and operator-based approach, CrowdDB presents the opportunity
to implement cost-based optimizations to improve query cost, time,
and accuracy — a facility that is lacking from most crowdsourcing
platforms today.

Of course, there are many new challenges that must be addressed
in the design of a crowd-enabled DBMS. The main ones stem from
the fundamental differences in the way that people work compared
to computers and from the inherent ambiguity in many of the hu-
man tasks, which often involve natural language understanding and
matters of opinion. There are also technical challenges that arise
due to the use of a specific crowdsourcing platform such as AMT.
Such challenges include determining the most efficient organiza-
tion of tasks submitted to the platform, quality control, incentives,
payment mechanisms, etc.

In the following we explain these challenges and present initial
solutions that address them. Our main contributions are:

• We propose simple SQL schema and query extensions that
enable the integration of crowdsourced data and processing.

• We present the design of CrowdDB including new crowd-
sourced query operators and plan generation techniques that
combine crowdsourced and traditional query operators.

• We describe methods for automatically generating effective
user interfaces for crowdsourced tasks.

• We present the results of microbenchmarks of the perfor-
mance of individual crowdsourced query operators on the
AMT platform, and demonstrate that CrowdDB is indeed
able to answer queries that traditional DBMSs cannot.

The remainder of this paper is organized as follows: Section
2 presents background on crowdsourcing and the AMT platform.
Section 3 gives an overview of CrowdDB, followed by the Crowd-
SQL extension to SQL in Section 4, the user interface generation
in Section 5, and query processing in Section 6. In Section 7 we
present experimental results. Section 8 reviews related work. Sec-
tion 9 presents conclusions and research challenges.

2. CROWDSOURCING
A crowdsourcing platform creates a marketplace on which re-

questers offer tasks and workers accept and work on the tasks. We
chose to build CrowdDB using one of the leading platforms, Ama-
zon Mechanical Turk (AMT). AMT provides an API for requesting
and managing work, which enables us to directly connect it to the
CrowdDB query processor. In this discussion, we focus on this
particular platform and its interfaces.

AMT supports so-called microtasks. Microtasks usually do not
require any special training and typically take no longer than one
minute to complete; although in extreme cases, tasks can require
up to one hour to finish [15]. In AMT, as part of specifying a task,
a requester defines a price/reward (minimum $0.01) that the worker
receives if the task is completed satisfactorily. In AMT currently,
workers from anywhere in the world can participate but requesters
must be holders of a US credit card. Amazon does not publish cur-
rent statistics about the marketplace, but it contained over 200,000



workers (referred to as turkers) in 2006 [2], and by all estimates,
the marketplace has grown dramatically since then [24].

2.1 Mechanical Turk Basics
AMT has established its own terminology. There are slight dif-

ferences in terminology used by requesters and workers. For clarity
in this paper, we use the requesters’ terminology. Key terms are:

• HIT: A Human Intelligent Task, or HIT, is the smallest entity
of work a worker can accept to do. HITs contain one or more
jobs. For example, tagging 5 pictures could be one HIT. Note
that “job” is not an official term used in AMT, but we use it in
this paper where necessary.

• Assignment: Every HIT can be replicated into multiple assign-
ments. AMT ensures that any particular worker processes at
most a single assignment for each HIT, enabling the requester
to obtain answers to the same HIT from multiple workers. Odd
numbers of assignments per HIT enable majority voting for qual-
ity assurance, so it is typical to have 3 or 5 assignments per HIT.
Requesters pay workers for each assignment completed satisfac-
torily.

• HIT Group: AMT automatically groups similar HITs together
into HIT Groups based on the requester, the title of the HIT, the
description, and the reward. For example, a HIT Group could
contain 50 HITs, each HIT asking the worker to classify several
pictures. As we discuss below, workers typically choose which
work to perform based on HIT Groups.

The basic AMT workflow is as follows: A requester packages the
jobs comprising his or her information needs into HITs, determines
the number of assignments required for each HIT and posts the
HITs. Requesters can optionally specify requirements that work-
ers must meet in order to be able to accept the HIT. AMT Groups
compatible HITs into HIT Groups and posts them so that they are
searchable by workers. A worker accepts and processes assign-
ments. Requesters then collect all the completed assignments for
their HITs and apply whatever quality control methods they deem
necessary.

Furthermore, requesters approve or reject each assignment com-
pleted by a worker: Approval is given at the discretion of the re-
quester. Assignments are automatically deemed approved if not
rejected within a time specified in the HIT configuration. For each
approved assignment the requester pays the worker the pre-defined
reward, an optional bonus, and a commission to Amazon.

Workers access AMT through their web browsers and deal with
two kinds of user interfaces. One is the main AMT interface, which
enables workers to search for HIT Groups, list the HITs in a HIT
Group, and to accept assignments. The second interface is provided
by the requester of the HIT and is used by the worker to actually
complete the HIT’s assignments. A good user interface can greatly
improve result quality and worker productivity.

In AMT, requesters and workers have visible IDs so relationships
and reputations can be established over time. For example, workers
will often lean towards accepting assignments from requesters who
are known to provide clearly-defined jobs with good user interfaces
and who are known for having good payment practices. Informa-
tion about requesters and HIT Groups are shared among workers
via on-line forums.

2.2 Mechanical Turk APIs
A requester can automate his or her workflow of publishing HITs,

etc. by using AMT’s web service or REST APIs. The relevant (to
CrowdDB) interfaces are:

• createHIT(title, description, question, keywords, reward, dura-
tion, maxAssignments, lifetime) → HitID: Calling this method
creates a new HIT on the AMT marketplace. The createHIT
method returns a HitID to the requester that is used to identify
the HIT for all further communication. The title, description,
and reward and other fields are used by AMT to combine HITs
into HIT Groups. The question parameter encapsulates the user
interface that workers use to process the HIT, including HTML
pages. The duration parameter indicates how long the worker
has to complete an assignment after accepting it. The lifetime
attribute indicates an amount of time after which the HIT will
no longer be available for workers to accept. Requesters can
also constrain the set of workers that are allowed to process the
HIT. CrowdDB, however, does not currently use this capability
so the details of this and several other parameters are omitted for
brevity.
• getAssignmentsForHIT(HitID)→ list(asnId, workerId , answer):

This method returns the results of all assignments of a HIT that
have been provided by workers (at most, maxAssignments an-
swers as specified when the requester created the HIT). Each
answer of an assignment is given an asnID which is used by the
requester to approve or reject that assignment (described next).
• approveAssignment(asnID) / rejectAssignment(asnID): Approval

triggers the payment of the reward to the worker and the com-
mission to Amazon.
• forceExpireHIT(HitID): Expires a HIT immediately. Assign-

ments that have already been accepted may be completed.

2.3 CrowdDB Design Considerations
The crowd can be seen as a set of specialized processors. Hu-

mans are good at certain tasks (e.g., image recognition) and rela-
tively bad at others (e.g., number crunching). Likewise, machines
are good and bad at certain tasks and it seems that people’s and
machines’ capabilities complement each other nicely. It is this syn-
ergy that provides the opportunity to build a hybrid system such
as CrowdDB. However, while the metaphor of humans as comput-
ing resources is powerful, it is important to understand when this
metaphor works, and when it breaks down. In this section we high-
light some key issues that have influenced the design of CrowdDB.

Performance and Variability: Obviously, people and machines
differ greatly in the speed at which they work, the cost of that work,
and the quality of the work they produce. More fundamentally,
people show tremendous variability both from one individual to
another and over time for a particular individual. Malicious behav-
ior and “spamming” are also concerns. For CrowdDB these dif-
ferences have implications for query planning, fault tolerance and
answer quality.

Task Design and Ambiguity: Crowd-sourced tasks often have
inherent ambiguities due to natural language and subjective require-
ments. The crowd requires a graphical user interface with human-
readable instructions. Unlike programming language commands,
such instructions can often be interpreted in different ways. Also,
the layout and design of the interface can have a direct effect on
the speed and accuracy with which people complete the tasks. The
challenges here are that tasks must be carefully designed with the
workers in mind and that quality-control mechanisms must be de-
veloped, even in cases where it is not possible to determine the
absolute correctness of an answer.

Affinity and Learning: Unlike CPUs, which are largely fungi-
ble, crowd workers develop relationships with requesters and skills
for certain HIT types. They learn over time how to optimize their
revenue. Workers are hesitant to take on tasks for requesters who
do not have a track record of providing well-defined tasks and pay-



ing appropriately and it is not uncommon for workers to specialize
on specific HIT types (e.g., classifying pictures) or to favor HITs
from certain requesters [16]. This behavior requires the CrowdDB
design to take a longer-term view on task and worker community
development.

Relatively Small Worker Pool: Despite the large and growing
number of crowdsourcing workers, our experience, and that of oth-
ers [18] is that the pool of workers available to work for any one
requester is surprisingly small. This stems from a number of fac-
tors, some having to do with the specific design of the AMT web
site, and others having to do with the affinity and learning issues
discussed previously. For CrowdDB, this impacts design issues
around parallelism and throughput.

Open vs. Closed World: Finally, as mentioned in the Intro-
duction, a key difference between traditional data processing and
crowd processing is that in the latter, there is an effectively un-
bounded amount of data available. Any one query operator could
conceivably return an unlimited number of answers. This has pro-
found implications for query planning, query execution costs and
answer quality.

Having summarized the crowdsourcing platform, we now turn to
the design and implementation of CrowdDB.

3. OVERVIEW OF CrowdDB
Figure 1 shows the general architecture of CrowdDB. An appli-

cation issues requests using CrowdSQL, a moderate extension of
standard SQL. Application programmers can build their applica-
tions in the traditional way; the complexities of dealing with the
crowd are encapsulated by CrowdDB. CrowdDB answers queries
using data stored in local tables when possible, and invokes the
crowd otherwise. Results obtained from the crowd can be stored in
the database for future use.
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Figure 1: CrowdDB Architecture

As shown on the left side of the figure, CrowdDB incorporates
the traditional query compilation, optimization and execution com-
ponents. These components are extended to cope with human-
generated input as described in subsequent sections. On the right
side of the figure are new components that interact with the crowd-
sourcing platform. We briefly describe these from the top down.

Turker Relationship Management: As described in Section
2.3, the requester/worker relationship evolves over time and care

must be taken to cultivate and maintain an effective worker pool.
This module facilitates the most important duties of a requester,
such as approving/rejecting assignments, paying and granting bonuses,
etc. This way, CrowdDB helps to build communities for requesters
which in the long run pays back in improved result quality, better
response times, and lower cost.

User Interface Management: HITs require user interfaces and
human-readable instructions. CrowdSQL extends SQL’s data defi-
nition language to enable application developers to annotate tables
with information that helps in user interface creation. At runtime,
CrowdDB then automatically generates user interfaces for HITs
based on these annotations as well as the standard type definitions
and constraints that appear in the schema. Programmers can also
create specific UI forms to override the standard UI generation in
complex or exceptional cases.

The user interfaces generated for HITs are constrained where
possible so that workers return only a pre-specified number of an-
swers, and are designed to reduce errors by favoring simple tasks
and limiting choices (i.e., adding dropdown lists or check boxes).

HIT Manager: This component manages the interactions be-
tween CrowdDB and the crowdsourcing platform (AMT in this
case). It makes the API calls to post HITs, assess their status, and
obtain the results of assignments. The HITs to be posted are deter-
mined by the query compiler and optimizer. The HIT manager also
interacts with the storage engine in order to obtain values to pre-
load into the HIT user interfaces and to store the results obtained
from the crowd into the database.

The following sections explain the most important building blocks
of CrowdDB in more detail: CrowdSQL, user interface generation,
and query processing.

4. CrowdSQL
This section presents CrowdSQL, a SQL extension that supports

crowdsourcing. We designed CrowdSQL to be a minimal extension
to SQL to support use cases that involve missing data and subjec-
tive comparisons. This approach allows application programmers
to write (Crowd) SQL code in the same way as they do for tra-
ditional databases. In most cases, developers are not aware that
their code involves crowdsourcing. While this design results in a
powerful language (CrowdSQL is a superset of SQL) with sound
semantics, there are a number of practical considerations that such
a powerful language entails. We discuss these issues and other ex-
tensions at the end of this section.

4.1 Incomplete Data

4.1.1 SQL DDL Extensions
Incomplete data can occur in two flavors: First, specific attributes

of tuples could be crowdsourced. Second, entire tuples could be
crowdsourced. We capture both cases by adding a special key-
word, CROWD, to the SQL DDL, as shown in the following two
examples.

EXAMPLE 1 (Crowdsourced Column) In the following Department
table, the url is marked as crowdsourced. Such a model would be
appropriate, say, if new departments are generated automatically
(e.g., as part of an application program) and the url is often not
provided but is likely available elsewhere.

CREATE TABLE Department (
university STRING,
name STRING,
url CROWD STRING,



phone STRING,
PRIMARY KEY (university, name) );

EXAMPLE 2 (Crowdsourced Table) This example models a Pro-
fessor table as a crowdsourced table. Such a crowdsourced table
is appropriate if it is expected that the database typically only cap-
tures a subset of the professors of a department. In other words,
CrowdDB will expect that additional professors may exist and pos-
sibly crowdsource more professors if required for processing spe-
cific queries.

CREATE CROWD TABLE Professor (
name STRING PRIMARY KEY,
email STRING UNIQUE,
university STRING,
department STRING,
FOREIGN KEY (university, department)

REF Department(university, name) );

CrowdDB allows any column and any table to be marked with
the CROWD keyword. CrowdDB does not impose any limitations
with regard to SQL types and integrity constraints; for instance, ref-
erential integrity constraints can be defined between two CROWD
tables, two regular tables, and between a regular and a CROWD ta-
ble in any direction. There is one exception: CROWD tables (e.g.,
Professor) must have a primary key so that CrowdDB can infer if
two workers input the same new tuple (Section 4.3). Furthermore,
CROWD columns and tables can be used in any SQL query and
SQL DML statement, as shown in the following subsections.

4.1.2 SQL DML Semantics
In order to represent values in crowdsourced columns that have

not yet been obtained, CrowdDB introduces a new value to each
SQL type, referred to as CNULL. CNULL is the CROWD equiva-
lent of the NULL value in standard SQL. CNULL indicates that a
value should be crowdsourced when it is first used.

CNULL values are generated as a side-effect of INSERT state-
ments. (The semantics of DELETE and UPDATE statements are un-
changed in CrowdDB.) CNULL is the default value of any CROWD
column. For instance,

INSERT INTO Department(university, name)
VALUES ("UC Berkeley", "EECS");

would create a new tuple. The phone field of the new department
is initialized to NULL, as specified in standard SQL. The url field
of the new department is initialized to CNULL, according to the
special CrowdSQL semantics for CROWD columns. Both fields
could be set later by an UPDATE statement. However, the url field
could also be crowdsourced as a side-effect of queries, as described
in the next subsection.

It is also possible to specify the value of a CROWD column as
part of an INSERT statement; in this case, the value would not be
crowdsourced (unless it is explicitly set to CNULL as part of an
UPDATE statement); e.g.,

INSERT INTO Department(university, name, url)
VALUES ("ETH Zurich", "CS", "inf.ethz.ch");

It is also possible to initialize or set the value of a CROWD column
to NULL; in such a case, crowdsourcing would not take effect. Fur-
thermore, it is possible to explicitly initialize or set (as part of an
UPDATE statement) the value of a CROWD column to CNULL.

CNULL is also important for CROWD tables, where all columns
are implicitly crowdsourced. If an INSERT statement is executed

on a CROWD table, then all non-key attributes would be initial-
ized to CNULL, if not specified otherwise as part of the INSERT
statement. However, the key of a CROWD table must be specified
for the INSERT statement as the key is never allowed to contain
CNULL. This rule is equivalent to the rule that keys must not be
NULL enforced by most standard SQL database systems. However,
new tuples of CROWD tables are typically crowdsourced entirely,
as described in the next subsection.

In summary, CrowdSQL allows any kind of INSERT, UPDATE,
and DELETE statements; all these statements can be applied to
CROWD columns and tables. Furthermore, CrowdSQL supports
all standard SQL types (including NULL values). A special CNULL
value indicates data in CROWD columns that should be crowd-
sourced when needed as part of processing a query.

4.1.3 Query Semantics
CrowdDB supports any kind of SQL query on CROWD tables

and columns; for instance, joins and sub-selects between two CROWD
tables are allowed. Furthermore, the results of these queries are as
expected according to the (standard) SQL semantics.

What makes CrowdSQL special is that it incorporates crowd-
sourced data as part of processing SQL queries. Specifically, CrowdDB
asks the crowd to instantiate CNULL values if they are required to
evaluate predicates of a query or if they are part of a query result.
Furthermore, CrowdDB asks the crowd for new tuples of CROWD
tables if such tuples are required to produce a query result. Crowd-
sourcing as a side-effect of query processing is best explained with
the help of examples:

SELECT url FROM Department
WHERE name = "Math";

This query asks for the url of the Math department. If the url is
CNULL, then the semantics of CrowdSQL require that the value
be crowdsourced. The following query asks for all professors with
Berkeley email addresses in the Math department:

SELECT * FROM Professor
WHERE email LIKE "%berkeley%" AND dept = "Math";

This query involves crowdsourcing the E-Mail address and depart-
ment of all known professors (if their current value is CNULL) in
order to evaluate the WHERE clause. Furthermore, processing this
query involves asking the crowd for possibly additional Math pro-
fessors that have not been crowdsourced yet.

CrowdSQL specifies that tables are updated as a side-effect of
crowdsourcing. In the first query example above, for instance,
the url column would be implicitly updated with the crowdsourced
URL. Likewise, missing values in the email column would be im-
plicitly populated and new professors would be implicitly inserted
as a side-effect of processing the second query. Logically, these up-
dates and inserts are carried out as part of the same transaction as
the query and they are executed before the query; i.e., their effects
are visible during query processing.

4.2 Subjective Comparisons
Recall that beyond finding missing data, the other main use of

crowdsourcing in CrowdDB is subjective comparisons. In order to
support this functionality, CrowdDB has two new built in functions:
CROWDEQUAL and CROWDORDER.
CROWDEQUAL takes two parameters (an lvalue and an rvalue)

and asks the crowd to decide whether the two values are equal. As
syntactic sugar, we use the ∼= symbol and an infix notation, as
shown in the following example:



EXAMPLE 3 To ask for all "CS" departments, the following query
could be posed. Here, the query writer asks the crowd to do entity
resolution with the possibly different names given for Computer
Science in the database:

SELECT profile FROM department
WHERE name ~= "CS";

CROWDORDER is used whenever the help of the crowd is needed
to rank or order results. Again, this function is best illustrated with
an example.

EXAMPLE 4 The following CrowdSQL query asks for a ranking of
pictures with regard to how well these pictures depict the Golden
Gate Bridge.

CREATE TABLE picture (
p IMAGE,
subject STRING

);
SELECT p FROM picture
WHERE subject = "Golden Gate Bridge"
ORDER BY CROWDORDER(p,
"Which picture visualizes better %subject");

As with missing data, CrowdDB stores the results of CROWDEQUAL
and CROWDORDER calls so that the crowd is only asked once for
each comparison. This caching is equivalent to the caching of ex-
pensive functions in traditional SQL databases, e.g., [13]. This
cache can also be invalidated; the details of the syntax and API
to control this cache are straightforward and omitted for brevity.

4.3 CrowdSQL in Practice
The current version of CrowdSQL was designed to be a minimal

extension to SQL and address some of the use cases that involve in-
complete data and subjective comparisons. This version was used
in the first implementation of CrowdDB which was used as a plat-
form for the experiments reported in Section 7. While this minimal
extension is sound and powerful, there are a number of considera-
tions that limit the usage of CrowdSQL in practice.

The first issue is that CrowdSQL changes the closed-world to an
open-world assumption. Thus cost and response time of queries
can be unbounded in CrowdSQL. If a query involves a CROWD
table, then it is unclear how many tuples need to be crowdsourced
in order to fully process the query. For queries that involve reg-
ular tables with CROWD columns or subjective comparisons, the
amount of information that needs to be crowdsourced is bounded
by the number of tuples and CNULL values stored in the database;
nevertheless, the cost can be prohibitive. In order to be practical,
CrowdSQL should provide a way to define a budget for a query.
Depending on the use case, an application developer should be able
to constrain the cost, the response time, and/or the result quality.
For instance, in an emergency situation, response time may be crit-
ical whereas result quality should be given priority if a strategic de-
cision of an organization depends on a query. In the current version
of CrowdDB, we provide only one way to specify a budget — using
a LIMIT clause [7]. The LIMIT clause constrains the number of
tuples that are returned as a result of a query. This way, the LIMIT
clause implicitly constrains the cost and response time of a query.
A LIMIT clause (or similar syntax) is supported by most relational
database systems and this clause has the same semantics in Crowd-
SQL as in (traditional) SQL. We used this mechanism because it
was available and did not require any extensions to SQL syntax or

semantics. It should be clear, however, that more sophisticated and
explicit mechanisms to specify budgets are needed.

A second extension that we plan for the next version of Crowd-
SQL is lineage. In CrowdDB, data can be either crowdsourced as
a side-effect of query processing or entered using SQL DML state-
ments. In both cases, application developers may wish to query the
lineage in order to take actions. For instance, it may become known
that a certain worker is a spammer; in such a situation, it may be
appropriate to reset all crowdsourced values to CNULL that were
derived from input from that worker. Also, it may be important to
know when data was entered in order to determine whether the data
is outdated (i.e., time-to-live); the age of data may be relevant for
both crowdsourced and machine-generated data.

A third practical issue involves the cleansing of crowdsourced
data; in particular, entity resolution of crowdsourced data. As men-
tioned in Section 4.1, all CROWD tables must have a primary key.
The current version of CrowdDB uses the primary key values in
order to detect duplicate entries of CROWD tables. This approach
works well if it can be assumed that two independent workers will
enter exactly the same literals. In many cases, this assumption is
not realistic. As part of future work, we plan to extend the DDL
of CrowdSQL so that application developers can specify that data
cleaning should be carried out on crowdsourced data (e.g., entity
resolution). Of course, this feature comes at a cost so that devel-
opers should have control to use this feature depending on their
budget.

5. USER INTERFACE GENERATION
Recall that a key to success in crowdsourcing is the provision of

effective user interfaces. In this section we describe how CrowdDB
automatically generates user interfaces for crowdsourcing incom-
plete information and subjective comparisons. As shown in Fig-
ure 1, the generation of user interfaces is a two-step process in
CrowdDB. At compile-time, CrowdDB creates templates to crowd-
source missing information from all CROWD tables and all reg-
ular tables which have CROWD columns. These user interfaces
are HTML (and JavaScript) forms that are generated based on the
CROWD annotations in the schema and optional free-text annota-
tions of columns and tables that can also be found in the schema
[21]. Furthermore, these templates can be edited by application de-
velopers to provide additional custom instructions. These templates
are instantiated at runtime in order to provide a user interface for a
concrete tuple or a set of tuples. The remainder of this section gives
examples of user interfaces generated for the tables and subjective
comparisons described in Section 4.

5.1 Basic Interfaces
Figure 2a shows an example user interface generated for crowd-

sourcing the URL of the “EECS” department of “UC Berkeley”
(Example 1). The title of the HTML is the name of the Table (i.e.,
Department in this example) and the instructions ask the worker to
input the missing information. In general, user interface templates
are instantiated by copying the known field values from a tuple into
the HTML form (e.g., “EECS” and “UC Berkeley” in this exam-
ple). Furthermore, all fields of the tuple that have CNULL values
become input fields of the HTML form (i.e., URL in this example).

In addition to HTML code, CrowdDB generates JavaScript code
in order to check for the correct types of input provided by the
workers. For instance, if the CrowdSQL involves a CHECK con-
straint that limits the domain of a crowdsourced attribute (e.g., “EUR”,
“USD”, etc. for currencies), then a select box is generated that al-
lows the worker to choose among the legal values for that attribute.

A possible optimization that is not shown in Figure 2a is to batch
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Figure 2: Example User Interfaces Generated by CrowdDB

several tuples. For instance, if the URL of several departments
needs to be crowdsourced, then a single worker could be asked to
provide the URL information of a set of department (e.g., EECS,
Physics and Chemistry of UC Berkeley). The assumption is that it
is cheaper to input two pieces of information of the same kind as
part of a single form than twice as part of separate forms. CrowdDB
supports this batching functionality.

Another optimization is prefetching of attributes for the same tu-
ple. For instance, if both the department and email of a professor
are unknown, but only the email of that professor is required to
process a query, the question is whether the department should also
be crowdsourced. The trade-offs are straight-forward: Prefetching
may hurt the cost and response time of the current query, but it may
help reduce the cost and response time of future queries. The cur-
rent version of CrowdDB carries out prefetching, thereby assuming
that the incremental cost of prefetching is lower than the return on
the prefetching investment.

CrowdDB also creates user interfaces for the CROWDEQUAL and
CROWDORDER functions. Figures 2b and 2c show example inter-
faces for comparing and ordering tuples. Both types of interfaces
can also be batched as described earlier. However, for ordering
tuples, our current implementation only supports binary compar-
isons. Multi-way comparisons remain future work.

5.2 Multi-Relation Interfaces
Crowdsourcing relations with foreign keys require special con-

siderations. In the simplest case, the foreign key references a non-
crowdsourced table. In this case, the generated user interface shows
a drop-down box containing all the possible foriegn key values,
or alternatively if the domain is too large for a drop-down box an
Ajax-based “suggest” function is provided.

In contrast, if the referenced table is a CROWD table, the set of
all possible foriegn key values is not known, and additional tuples
of the referenced table may need to be crowdsourced. For the mo-
ment, let us assume that the department table is indeed a CROWD
table (deviating from its definition in Example 1). In this case, a
worker may wish to specify that a professor is member of a new
department; i.e., a department that has not yet been obtained from
the crowd.

CrowdDB supports two types of user interfaces for such situa-
tions. The first type is the normalized interface shown in Figure 2d.
This interface requires the worker to enter values for the foreign key
attributes, but does not allow him or her to enter any other fields of
the referenced tuple. Here, as above, the “suggest” function can
help to avoid entity resolution problems.

The second type is a denormalized interface, which allows a
worker to enter missing values for non-key fields of the referenced
table as part of the same task. To this end, the user interface pro-
vides an add button (in addition, the the drop down menu of known
departments). Clicking on this add button brings up a pop-up win-
dow or new browser tab (depending on the browser configuration)
that allows to enter the information of the new department as visu-
alized in Figure 2e. How the optimizer chooses the interface for a
particular query is explained in the next section.

Note that Figures 2d and 2e show the two types of user interfaces

generated in the case where additional information is being crowd-
sourced for existing professor tuples. Similar user interfaces can be
generated to crowdsource entirely new professor tuples. Such inter-
faces differ from these examples in the following ways: First, the
key attribute(s) (i.e., the name of a professor in this case) becomes
an input field. In order to restrict the set of possible new tuples,
CrowdDB allows presetting the value of non-key attributes using
the where clause, e.g. only considering professors from UC Berke-
ley. Second, JavaScript logic is generated that shows the names
of professors that have already been recorded while typing in the
name of a (potentially new) professor. Finally, an additional button
is provided to allow workers to report if they cannot find any new
professor records.

6. QUERY PROCESSING
Since CrowdDB is SQL-based, query plan generation and execu-

tion follows a largely traditional approach. In particular, as shown
in Figure 1, CrowdDB has a parser, optimizer, and runtime system
and these components play the same role in CrowdDB as in a tradi-
tional database system. The main differences are that the CrowdDB
parser has been extended to parse CrowdSQL, CrowdDB has addi-
tional operators that effect crowdsourcing (in addition to the tradi-
tional relational algebra operators found in a traditional database
system), and the CrowdDB optimizer includes special heuristics to
generate plans with these additional Crowd operators. This section
sketches these differences and discusses an example query plan.

6.1 Crowd Operators
CrowdDB implements all operators of the relational algebra, just

like any traditional database system (e.g., join, group-by, index
scans, etc.). In addition, CrowdDB implements a set of Crowd op-
erators that encapsulate the instantiation of user interface templates
at runtime and the collection of results obtained from crowdsourc-
ing. This way, the implementation of traditional operators need not
be changed. The next subsection describes how query plans are
generated with such Crowd operators. This subsection describes
the set of Crowd operators currently implemented in CrowdDB.

The basic functionality of all Crowd operators is the same. They
are all initialized with a user interface template and the standard
HIT parameters that are used for crowdsourcing as part of a par-
ticular Crowd operator. At runtime, they consume a set of tuples,
e.g., Professors. Depending on the Crowd operator, crowdsourc-
ing can be used to source missing values of a tuple (e.g., the email
of a Professor) or to source new tuples. In both cases, each tuple
represents one job (using the terminology from Section 2.1). Sev-
eral tuples can be batched into a single HIT as described in Section
5.1; e.g., a user interface instance could be used to crowdsource
the email of say, three, Professors. Furthermore, Crowd operators
create HIT Groups. For instance, if the email of 300 professors
needs to be sourced and each HIT involves three professors, then
one HIT Group of 100 HITs could be generated. As shown in Sec-
tion 7, when using AMT, the size of HIT Groups and how they are
posted must be carefully tuned.

In addition to the creation of HITs and HIT Groups, each Crowd
operator consumes results returned by the crowd and carries out
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quality control. In the current CrowdDB prototype, quality control
is carried out by a majority vote on the input provided by different
workers for the same HIT. The number of workers assigned to
each HIT is controlled by an Assignments parameter (Section 2.1).
The initial number of Assignments is currently a static parameter of
CrowdDB. As mentioned in Section 4.3, this parameter should be
set by the CrowdDB optimizer based on budget constraints set via
CrowdSQL.

The current version of CrowdDB has three Crowd operators:

• CrowdProbe: This operator crowdsources missing information
of CROWD columns (i.e., CNULL values) and new tuples. It
uses interfaces such as those shown in Figures 2a, 2d and 2e.
The operator enforces quality control by selecting the majority
answer for every attribute as the final value. That is, given the
answers for a single tuple (i.e., entity with the same key), the ma-
jority of turkers have to enter the same value to make it the final
value of the tuple. If no majority exists, more workers are asked
until the majority agrees or a pre-set maximum of answers are
collected. In the latter case, the final value is randomly selected
from the values most workers had in common.

In the case of newly created tuples it can happen that all workers
enter tuples with different primary keys, making finding a ma-
jority impossible. In this case, the operator re-posts the tasks by
leaving all non-confirmed attributes empty except the ones com-
prising the primary key. This allows CrowdDB to obtain more
answers for every key in order to form a majority quorum.
• CrowdJoin: This operator implements an index nested-loop join

over two tables, at least one of which is crowdsourced. For each
tuple of the outer relation, this operator creates one or more HITs
in order to crowdsource new tuples from the inner relation that
matches the tuple of the outer relation. Correspondingly, the in-
ner relation must be a CROWD table and the user interface to
crowdsource new tuples from the inner relation is instantiated
with the join column values of the tuple from the outer relation
according to the join predicates. The quality control technique
is the same as for CrowdProbe.
• CrowdCompare: This operator implements the CROWDEQUAL

and CROWDORDER functions described in Section 4.2. It in-
stantiates user interfaces such as those shown in Figures 2c and
2d. Note that CrowdCompare is typically used inside another
traditional operator, such as sorting or predicate evaluation. For
example, an operator that implements quick-sort might use Crowd-
Compare to perform the required binary comparisons. Quality
control is based on the simple majority vote.

6.2 Physical Plan Generation
Figure 3 presents an end-to-end example that shows how CrowdDB

creates a query plan for a simple CrowdSQL query. A query is
first parsed; the result is a logical plan, as shown in Figure 3b.

This logical plan is then optimized using traditional and crowd-
specific optimizations. Figure 3c shows the optimized logical plan
for this example. In this example, only predicate push-down was
applied, a well-known traditional optimization technique. Some
crowd-specific optimization heuristics used in CrowdDB are de-
scribed in the next subsection. Finally, the logical plan is translated
into a physical plan which can be executed by the CrowdDB run-
time system. As part of this step, Crowd operators and traditional
operators of the relational algebra are instantiated. In the example
of Figure 3, the query is executed by a CrowdProbe operator in or-
der to crowdsource missing information from the Professor table
and a CrowdJoin operator in order to crowdsource missing infor-
mation from the Department table. (In this example, it is assumed
that the Department is a CROWD table; otherwise, the CrowdJoin
operator would not be applicable.)

6.3 Heuristics
The current CrowdDB compiler is based on a simple rule-based

optimizer. The optimizer implements several essential query rewrit-
ing rules such as predicate push-down, stopafter push-down [7],
join-ordering and determining if the plan is bounded [5]. The last
optimization deals with the open-world assumption by ensuring
that the amount of data requested from the crowd is bounded. Thus,
the heuristic first annotates the query plan with the cardinality pre-
dictions between the operators. Afterwards, the heuristic tries to
re-order the operators to minimize the requests against the crowd
and warns the user at compile-time if the number of requests cannot
be bounded.

Furthermore, we also created a set of crowd-sourcing rules in or-
der to set the basic crowdsourcing parameters (e.g., price, batching-
size), select the user interface (e.g., normalized vs. denormalized)
and several other simple cost-saving techniques. For example, a
delete on a crowd-sourced table does not try to receive all tuples
satisfying the expression in the delete statement before deleting
them. Instead the optimizer rewrites the query to only look into
existing tuples.

Nevertheless, in contrast to a cost-based optimizer, a rule-based
optimizer is not able to exhaustively explore all parameters and
thus, often produces a sub-optimal result. A cost-based optimizer
for CrowdDB, which must also consider the changing conditions
on AMT, remains future work.

7. EXPERIMENTS AND RESULTS
This section presents results from experiments run with CrowdDB

and AMT. We ran over 25,000 HITs on AMT during October 2010,
varying parameters such as price, jobs per HIT and time of day. We
measured the response time and quality of the answers provided
by the workers. Here, we report on Micro-benchmarks (Section
7.1), that use simple jobs involving finding new data or making
subjective comparisons. The goals of these experiments are to ex-
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amine the behavior of workers for the types of tasks required by
CrowdDB, as well as to obtain insight that could be used in the de-
velopment of cost models for query optimization. We also describe
the results of experiments that demonstrate the execution of more
complex queries (Section 7.2).

It is important to note that the results presented in this section are
highly dependent on the properties of the AMT platform at a partic-
ular point in time (October 2010). AMT and other crowdsourcing
platforms are evolving rapidly and it is quite likely that response
time and quality properties will differ significantly between dif-
ferent platforms and even different versions of the same platform.
Furthermore, our results are highly-dependent on the specific tasks
we sent to the crowd. Nevertheless, we believe that a number of in-
teresting and important observations can be made even from these
initial experiments. We describe these below.

7.1 Micro Benchmarks
We begin by describing the results of experiments with simple

tasks requiring workers to find and fill in missing data for a table
with two crowdsourced columns:

CREATE TABLE businesses (
name VARCHAR PRIMARY KEY,
phone_number CROWD VARCHAR(32),
address CROWD VARCHAR(256)

);

We populated this table with the names of 3607 businesses (restau-
rants, hotels, and shopping malls) in 40 USA cities. We studied
the sourcing of the phone_number and address columns using the
following query:

SELECT phone_number, address FROM businesses;

Since workers and skills are not evenly distributed across time-
zones, the time of day can impact both response time and answer
quality [24]. While we ran tasks at many different times, in this
paper we report only on experiments that were carried out between
0600 and 1500 PST, which reduces the variance in worker avail-
ability [14]. We repeated all experiments four times and provide
the average values. Unless stated otherwise, groups of 100 HITs
were posted and each HIT involved five assignments. By default
the reward for each job was 1 cent and each HIT asked for the ad-
dress and phone number of one business (i.e., 1 Job per HIT).

7.1.1 Experiment 1: Response Time, Vary HIT Groups
As mentioned in Section 2, AMT automatically groups HITs of

the same kind into a HIT Group. In the first set of experiments
we examined the response time of assignments as a function of the
number of HITs in a HIT Group. For this experiment we varied

the number of HITs per HIT Group from 10 to 400 and fixed the
number of assignments per HIT to 1 (i.e., no replication). Figures
4 and 5 show the results of this experiment.

Figure 4 shows the time to completion of 1, 10, and 25 HITs as
the HIT Group size is varied. The results show that response times
decrease dramatically as the size of the HIT Groups is increased.
For example, for a HIT Group of 25 HITs, the first result was ob-
tained after approximately four minutes, while for a HIT Group
containing 400 HITs, the first result was obtained in seconds.

Figure 5 provides a different view on the results of this experi-
ment. In this case, we show the percentage of the HITs in a HIT
Group completed within 30 minutes, for HIT Groups of different
sizes. The points are annotated with the absolute number of HITs
completed within 30 minutes. This graph shows that there is a
tradeoff between throughput (in terms of HITs completed per unit
time) and completion percent. That is, while the best throughput
obtained was for the largest Group size (223.8 out of a Group of
400 HITs), the highest completion rates were obtained with Groups
of 50 or 100 HITs. The implication is that performance for sim-
ple tasks can vary widely even when only a single parameter is
changed. Thus, more work is required for understanding how to set
the HIT Group size and other parameters — a prerequisite for the
development of a true cost-based query optimizer for CrowdDB or
any crowdsourced query answering system.

7.1.2 Experiment 2: Responsiveness, Vary Reward
While Experiment 1 showed that even a fairly technical param-

eter such as HIT Group size can greatly impact performance, there
are other parameters that one would perhaps more obviously expect
to influence the performance of a crowdbased system. High on this
list would be the magnitude of the reward given to workers. Here,
we report on a set of experiments that examine how the response
time varies as a function of the reward. In these experiments, 100
HITs were posted per HIT Group and each HIT contained five as-
signments. The expectation is that the higher the reward for a HIT,
the faster workers will engage into processing that HIT.

Figure 6 shows the fraction of HITs (i.e., all five assignments)
that were completed as a function of time. The figure shows the
results for HITs with a reward of (from the bottom up) 1, 2, 3, and
4 cents per assignment. Obviously, for all rewards, the longer we
wait the more HITs are completed. The results show that for this
particular task, paying 4 cents gives the best performance, while
paying 1 cent gives the worst. Interestingly, there is very little dif-
ference between paying 2 cents and 3 cents per assignment.

Figure 7 shows the fraction of HITs that received at least one
assignment as a function of time and reward. Comparing Figures
6 and 7, two observations can be made. First, within sixty minutes
almost all HITs received at least one answer if a reward of 2, 3, or
4 cents was given (Figure 7), whereas only about 65% of the HITs
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were fully completed even for the highest reward of 4 cents (Figure
6). Second, if a single response to a HIT is acceptable, there is little
incentive to pay more than 2 cents in this case.

As in Experiment 1, the results here show that parameters must
be set carefully. In this case, of course, the parameter has a direct
effect on the monetary cost of obtaining the data from the crowd,
so setting it correctly for a given situation will be of significant
importance, and tradeoffs between cost and response time will need
to be exposed to users of the system.

7.1.3 Experiment 3: Worker Affinity and Quality
The previous experiments focused on the response time and through-

put of the crowd. Here, we turn our attention to two other issues:
distribution of work among workers and answer quality. In this ex-
periment, every HIT had five assignments. We carried out majority
votes among the five answers for phone numbers and computed
the ground truth from this majority vote. Any answer that devi-
ated from this ground truth (modulo formatting differences) was
counted as an error.

Figure 8 shows the results. For each worker, Figure 8 shows
the number of HITs computed by that worker and the number of
errors made by that worker. In Figure 8, the workers are plotted
along the x-axis in decreasing order of the number of HITs they
processed. As can be seen, the distribution of workers performing
HITs is highly skewed; this result confirms previous studies that
have shown that requesters acquire communities of workers who
specialize in processing their requests [15]. It seems that we were
able to build a community of about a dozen fans.

We expected that one benefit of having such a community would
be increased accuracy as workers gained experience with the task.
However, we did not observe such an effect in our experiments. The
lower curve in Figure 8 shows the number of errors made by each
worker. In absolute numbers, heavy hitters, of course, have more
errors. But in terms of error rate (Incorrect HITs / Total HITs, not
shown) they were no more accurate than other workers, at least for
the relatively simple task we examined here.

Note that the results shown in Figure 8 include HITs from the
full reward range of 1 to 4 cents. In this range the reward had
no noticeable impact on the error rate of the workers. We also
observed that in our experiments the error rates did not depend on
the HIT Group size.

7.2 Complex Queries
We now describe three experiments using CrowdSQL queries

that cannot be asked of traditional database systems.

7.2.1 Entity Resolution on Companies
For this experiment, we used a simple company schema with two

attributes, company name and headquarter address, and populated

it with the Fortune 100 companies. We ran the following query to
test entity resolution in CrowdDB:

SELECT name FROM company WHERE
name~="[a non-uniform name of the company]"

In Figure 9 we show results for four different instances of this
query. Each HIT involved comparing ten company names with one
of the four “non-uniform names”. Furthermore, each HIT had three
assignments and the reward was 1 cent per HIT. Figure 9 shows that
in all four cases, majority vote produced the correct answer. How-
ever, in only one of the cases (for BMW) was the vote unanimous.
Note that the total time to complete the 40 HITs (i.e., 120 assign-
ments) for these four queries was 39 minutes.

7.2.2 Ordering Pictures
For this experiment, we ran the query of Example 4 of Section 4;

i.e., we asked for a ranking of pictures in different subject areas.
Overall, we tested 30 subject areas having eight pictures for each
subject area. Each HIT involved the comparison of four pairs of
pictures. These rankings were conducted with 210 HITs, each with
three assignments. It took 68 minutes to complete the experiment.

Figure 10 shows the ranking of the Top 8 pictures for the “Golden
Gate” subject area. More concretely, Figure 10 shows the picture,
the number of workers that voted for that picture, the ranking of
that picture according to the majority vote, vs. the ranking accord-
ing to a group of six experts who frequently visit the Golden Gate
Bridge. In this case the CrowdDB results obtained via AMT match
well with the ranks given by the experts.

7.2.3 Joining Professors and Departments
The last experiment we present compares the performance of two

alternative plans for a join query. We populated the schema of Ex-
ample 1 and 2 with 25 professors and 8 departments and asked the
following SQL query:

SELECT p.name, p.email, d.name, d.phone
FROM Professor p, Department d
WHERE p.department = d.name AND

p.university = d.university AND
p.name = "[name of a professor]"

The first plan we executed for this query was the plan shown in
Figure 3d (Section 6). That is, we first ask for the Professor infor-
mation and the department the professor is associated with. Then
in a second step, we ask for the remaining information (i.e., phone
number) of the departments. The second plan was a denormalized
variant that asked for the Professor and Department information in
a single step, thereby creating only one type of HIT and the user
interface of Figure 2e. For both plans, each HIT involved one job



(a) 15, 1, 1 (b) 15, 1, 2 (c) 14, 3, 4 (d) 13, 4, 5

(e) 10, 5, 6 (f) 9, 6, 3 (g) 4, 7, 7 (h) 4, 7, 8
Figure 10: Pictures of the Golden Gate Bridge [1] ordered by workers. The tuples in the sub-captions is in the following format: {the number
of votes by the workers for this picture, rank of the picture ordered by the workers (based on votes), rank of the picture ordered by experts}.

(e.g., an entry form for a single professor) and three assignments.
The reward per HIT was 1 cent.

The two plans were similar in execution time and cost but dif-
fered significantly in result quality. The first plan took 206 minutes
and cost $0.99, while the second plan took 173 minutes and cost
$0.75. In terms of quality, the second plan produced wrong results
for all department telephone numbers. A close look at the data re-
vealed that workers unanimously submitted the professors’ phone
numbers instead of the departments’. In contrast, only a single tele-
phone number was incorrect when using the first plan.

7.3 Observations
In total, our experiments involved 25,817 assignments processed

by 718 different workers. Overall, they confirm the basic hypoth-
esis of our work: it is possible to employ human input via crowd-
sourcing to process queries that traditional systems cannot. The
experiments also, however, pointed out some of the challenges that
remain to be addressed, particularly in terms of understanding and
controlling the factors that impact response time, cost and result
quality. In this section, we outline several additional lessons we
learned during our experimentation.

First, we observe that unlike computational resources, crowd re-
sources involve long-term memory that can impact performance.
Requesters can track workers’ past performance and workers can
track and discuss the past behavior of requesters. We found, for
example, that to keep workers happy, it is wise to be less strict in
approving HITs. In one case, when we rejected HITs that failed
our quality controls, a worker posted the following on TurkOpticon
[27]: “Of the 299 HITs I completed, 11 of them were rejected...I
have attempted to contact the requester and will update...Until then
be very wary of doing any work for this requester...”. In another
case, a bug in CrowdDB triggered false alarms in security warnings
for browsers on the workers’ computers, and within hours concerns
about our jobs appeared on Turker Nation [26].

A second lesson is that user interface design and precise instruc-
tions matter. For our first experiments with AMT, we posted HITs
with handcrafted user interfaces. In one HIT, we gave a list of com-
pany names and asked the workers to check the ones that matched
“IBM”. To our surprise, the quality of the answers was very low.
The problem was that in some cases there were no good matches.
We expected workers to simply not check any boxes in such cases,
but this did not occur. Adding a checkbox for “None of the above”
improved the quality dramatically.

Our experimental results, along with these anecdotes, demon-
strate the complexity and new challenges that arise for crowdsourced

query processing. They also show, we believe, the need to auto-
mate such decisions to shield query and application writers from
these complexities and to enable robust behavior in the presence of
environmental changes. Such a need should be familiar to database
systems designers — it is essentially a requirement for a new form
of data independence.

8. RELATED WORK
We discuss related work in two primary areas: database systems

and the emerging crowdsourcing community.
CrowdDB leverages traditional techniques for relational query

processing wherever possible. Furthermore, we found that some
less-standard techniques developed for other scenarios were useful
for crowdsourcing as well. For example, crowdsourced compar-
isons such CROWDEQUAL, can be seen as special instances of ex-
pensive predicates [13]. Top N optimizations [7] are a useful tool
for dealing with the open-world nature of crowdsourcing, partic-
ularly when combined with operation-limiting techniques such as
those developed for cloud scalability in [5]. Looking forward, we
anticipate that the volatility of crowd performance will require the
use of a range of adaptive query processing techniques [12].

An important feature of CrowdDB is the (semi-) automatic gen-
eration of user interfaces from meta-data (i.e., SQL schemas). As
mentioned in Section 5, products such as Oracle Forms and MS
Access have taken a similar approach. Model-driven architecture
frameworks (MDA) enable similar functionality [17]. Finally, there
are useful analogies between CrowdDB and federated database sys-
tems (e.g., [8, 11]): CrowdDB can be considered to be a mediator,
the crowd can be seen as a data sources and the generated user in-
terfaces can be regarded as wrappers for those sources.

As stated in the introduction, crowdsourcing has been gathering
increasing attention in the research community. A recent survey of
the area can be found in [10]. There have been a number of studies
that analyze the behavior of microtask platforms such as Mechan-
ical Turk. Ipeirotis, for instance, analyzed the AMT marketplace,
gathering statistics about HITs, requesters, rewards, HIT comple-
tion rates, etc. [15]. Furthermore, the demographics of workers
(e.g., age, gender, education, etc.) on AMT have been studied [24].

Systems making early attempts to automatically control quality
and optimize response time include CrowdSearch [28] and Soylent
[6]. TurKit is a set of tools that enables programming iterative algo-
rithms over the crowd [19]. This toolkit has been used, for example,
to decipher unreadable hand-writing. Finally, Usher is a research
project that studies the design of data entry forms [9].

Independently of our work on CrowdDB, several groups in the



database research community have begun to explore the use of
crowdsourcing in relational query processing. Two papers on the
topic appeared in the recent CIDR 2011 conference [20, 23]. As
with our work, both of these efforts suggest the use of a declarative
query language in order to process queries involving human input.
[20] proposes the use of user-defined functions in SQL to specify
the user interfaces and the questions that should be crowdsourced
as part of query processing. [23] suggests the use of Datalog for
this purpose. However, neither of these early papers present details
of the system design or experimental results. As these projects ma-
ture, it will be interesting to compare the design decisions made
and implications with regard to usability and optimizability. Also
related is recent work in the database community on graph search-
ing using crowdsourcing [22]. Finally, there has also been work
on defining workflow systems that involve machines and humans.
Dustdar et al. describe in a recent vision paper how BPEL and web
services technology could be used for this purpose [25].

9. CONCLUSION
This paper presented the design of CrowdDB, a relational query

processing system that uses microtask-based crowdsourcing to an-
swer queries that cannot otherwise be answered. We highlighted
two cases where human input is needed: (a) unknown or incom-
plete data, and (b) subjective comparisons. CrowdDB extends SQL
in order to address both of these cases and it extends the query com-
piler and runtime system with auto-generated user interfaces and
new query operators that can obtain human input via these inter-
faces. Experiments with CrowdDB on Amazon Mechanical Turk
demonstrated that human input can indeed be leveraged to dramat-
ically extend the range of SQL-based query processing.

We described simple extensions to the SQL DDL and DML for
crowdsourcing. These simple extensions, however, raise deep and
fundamental issues for the design of crowd-enabled query languages
and execution engines. Perhaps most importantly, they invalidate
the closed-world assumption on which SQL semantics and process-
ing strategies are based. We identified implementation challenges
that arise as a result and outlined initial solutions.

Other important issues concern the assessment and preservation
of answer quality. Quality is greatly impacted by the motivation
and skills of the human workers as well as the structure and inter-
faces of the jobs they are asked to do. Performance, in terms of
latency and cost, is also effected by the way in which CrowdDB
interacts with workers. Through a series of micro-benchmarks we
identified key design parameters such as the grouping of tasks, the
rewards paid to workers, and the number of assignments per task.
We also discussed the need to manage the long-term relationship
with workers. It is important to build a community of workers and
to provide them with timely and appropriate rewards and, if not, to
give precise and understandable feedback.

Of course, there is future work to do. Answer quality is a per-
vasive issue that must be addressed. Clear semantics in the pres-
ence of the open-world assumption are needed for for both crowd-
sourced values and tables. While our existing approach preserves
SQL semantics in principle, there are practical considerations due
to cost and latency that can impact the answers that will be returned
by any crowdsourced query processor.

There are also a host of exciting implementation challenges. Cost-
based optimization for the crowd involves many new parameters
and considerations. Time-of-day, pricing, worker fatigue, task user-
interface design, etc. all impact performance and quality. Adaptive
optimization techniques will clearly be needed. Caching and man-
aging crowdsourced answers, if done properly, can greatly improve

performance as well. Answer quality assessment and improvement
will require the development of new techniques and operators.

The combination of human input with high-powered database
processing not only extends the range of existing database systems,
but also enables completely new applications and capabilities. For
this reason, we expect this to be a fruitful area of research and de-
velopment for many years.
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