
dbTouch: Analytics at your Fingertips

Stratos Idreos† Erietta Liarou?

†CWI, Amsterdam ?EPFL, Lausanne
stratos.idreos@cwi.nl erietta.liarou@epfl.ch

ABSTRACT
As we enter the era of data deluge, turning data into knowl-
edge has become the major challenge across most sciences
and businesses that deal with data. In addition, as we in-
crease our ability to create data, more and more people are
confronted with data management problems on a daily basis
for numerous aspects of every day life. A fundamental need
is data exploration through interactive tools, i.e., being able
to quickly and effortlessly determine data and patterns of
interest. However, modern database systems have not been
designed with data exploration and usability in mind; they
require users with expert knowledge and skills, while they
react in a strict and monolithic way to every user request,
resulting in correct answers but slow response times.

In this paper, we introduce the vision of a new generation of
data management systems, called dbTouch; our vision is to
enable interactive and intuitive data exploration via data-
base kernels which are tailored for touch-based exploration.
No expert knowledge is needed. Data is represented in a
visual format, e.g., a column shape for an attribute or a
fat rectangle shape for a table, while users can touch those
shapes and interact/query with gestures as opposed to firing
complex SQL queries. The system does not try to consume
all data; instead it analyzes only parts of the data at a time,
continuously refining the answers and continuously reacting
to user input. Every single touch on a data object can be
seen as a request to run an operator or a collection of opera-
tors over part of the data. Users react to running results and
continuously adjust the data exploration - they continuously
determine the data to be processed next by adjusting the di-
rection and speed of a gesture, i.e., a collection of touches;
the database system does not have control on the data flow
anymore. We discuss the various benefits that dbTouch sys-
tems bring for data analytics as well as the new and unique
challenges for database research in combination with touch
interfaces. In addition, we provide an initial architecture,
implementation and evaluation (and demo) of a dbTouch
prototype over IOs for IPad.

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribu-
tion and reproduction in any medium as well allowing derivative works,
provided that you attribute the original work to the author(s) and CIDR 2013.

6th Biennial Conference on Innovative Data Systems Research (CIDR ’13)
January 6-9, 2013, Asilomar, California, USA.

1. INTRODUCTION
The Big Data Era. Turning data into knowledge has
become an essential need for businesses and sciences. As
more data is generated, knowledge hides better within the
“pile of big data”. With several innovative ideas, systems
and research directions, the database community is making
strong steps towards dealing with the new challenges of big
data across several data management areas. For example,
recent highlights include research on databases that exploit
the map reduce and the cloud paradigms [1, 12, 34, 2, 38,
32], database kernels for approximate query processing [3,
31, 40], adaptive indexing [26, 27, 28, 18, 16, 29], adaptive
data loading [24, 4], high performance column-store [43, 8,
25] and hybrid database kernels [6, 30, 11, 17, 13], crowd-
sourcing [35, 15, 39, 14] and anthropocentric systems [44],
exploitation of modern hardware [20, 10, 36, 7], usability [37]
and energy aware systems [21, 33]. Still though, the big data
era poses several more unique challenges and opportunities.

Interactive Data Exploration. Here, we propose a novel
research direction to address one of the most critical data
management needs today, namely data exploration [9], i.e.,
when we are in search for interesting patterns often not
knowing a priori exactly what we are looking for. For exam-
ple, an astronomer wants to browse parts of the sky to look
for interesting effects, while a data analyst of an IT business
browses daily data of monitoring streams to figure out user
behavior patterns. What both cases have in common is a
daily stream of big data, i.e., in the order of multiple Ter-
abytes and the need to observe something interesting and
useful. The vision of interactive data exploration aims to
allow for instant access to the data, i.e., without expensive
initialization steps, while at the same time allowing the user
to extract knowledge from the data by selectively and inter-
actively investigating only parts of the data.

Vision: dbTouch. Our vision towards interactive data
exploration is to bring together core database research and
touch-interfaces, i.e., to enable users to touch and manipu-
late data in intuitive ways in search for interesting patterns.
We capture the new category of such systems and research
under the title dbTouch systems.

We propose to rethink database kernel designs towards ar-
chitectures tailored for touch-based data exploration.

In a dbTouch system, data is visualized in various shapes
and forms, while users can interactively explore the data

via touch input. For example, an attribute of a given table
may be represented by a column shape. Users are able to
apply gestures on this shape to get a feeling of the data
stored in the column, i.e., to scan, to run aggregates on part
of the data, or even to run complex queries.

The fundamental concepts of query, query plan and data
flow are redefined. The user touch, the gesture evolution,
i.e., the speed and the direction of the gesture, determine
the data to be processed next and the actions that need to
be performed. The system does not try to consume all data;
instead, it analyzes only parts of the data at a time, continu-
ously refining the answers and continuously reacting to user
input. Every single user touch on a data object can be seen
as a request to run an operator or a collection of operators
over a part of the data. At the same time, as a gesture, i.e.,
a collection of touches, evolves and varies in direction and
speed, users can determine the data they need to analyze,
reacting to intermediate results as they appear on screen.
The database system does not have control anymore on the
data flow.

The vision is that through the integration of touch gestures
and database kernels we enable new ways for users to have
a quick look and feel of their data in a natural and interac-
tive way. At the same time, new challenges arise for touch-
oriented database architectures.

Touch Input. Touch interfaces have already had a tremen-
dous impact at mobile computing. They literally trans-
formed the industry during the past 5 years, starting with
Apple’s IOs in 2008 and following up with Android from
Google, Windows 8 from Microsoft and webOS from Palm
(now HP). Although some were skeptic during the initial
stages, the immediate and wide adoption of mobile touch
based platforms clearly shows the huge potential. The key
element is the simplicity and the interactive nature of touch
interfaces which result in two fundamental side-effects; (a)
more people use and interact with touch interfaces, i.e., peo-
ple that are not necessarily very familiar with other forms of
computing and (b) new kinds of applications appear. This
is exactly the same trend we want to achieve with dbTouch.
Imagine the simplicity of sliding a finger over a rectangle
shape, representing a table on a touch tablet, to scan or to
run aggregates over the table instead of trying to figure out
the schema and to write SQL queries in text mode.

From Gestures to Query Processing. Naturally, the
dbTouch direction creates new research opportunities both
in the area of database architectures and in the area of visu-
alization. From a database researcher’s point of view there
are several fundamental questions to answer. Most critical
questions have to do with how we translate touch gestures
to database query processing algorithms/operators, i.e., how
does dbTouch react in terms of storage and access patterns
when we slide a finger or when we zoom-in with two fingers
over a column or a table? What is the equivalent of a query?
Several challenges arise. For example, when sliding a finger
to scan or to run an aggregation over a column, users may
choose to slide faster or slower or change the slide speed nu-
merous times or even pause for some time, while they are
observing the running results.

The interactive and continuously changing mode in dbTouch
is drastically different than what state-of-the-art database
systems support; it requires rethinking of core algorithms,
while new concepts arise when it comes to interactive query
processing. In traditional systems, once a query is posed,
the database controls the data flow, i.e., it is in full control
regarding which data it processes and in what order, such
as to compute the result to the user query. In dbTouch,
however, these concepts are blurred. In dbTouch, a query
is a session of one ore more continuous gestures and the
system needs to react to every touch, while the user is now
in control of the data flow.

In addition, other than translating gestures to database al-
gorithms, there are numerous optimization issues that ap-
pear in dbTouch. For example, when a user slides a finger
over a column with a varying slide speed, then we would like
to find a good way and timing to extrapolate the gesture
movement and to efficiently access, prefetch and precom-
pute the anticipated data to avoid stalling once the query
session resumes or when it moves faster.

Exploiting dbTouch. A dbTouch system is primarily meant
to work as an exploration tool, i.e., to speed up understand-
ing of data. For example, a user may choose to load a small
data sample directly on a tablet mobile dbTouch system or
use the tablet as an interface to a cloud based dbTouch sys-
tem over the complete data set.

Contributions. Our contributions are as follows.

1. We introduce the vision of dbTouch systems for inter-
active touch-based data exploration.

2. We introduce algorithms and functionalities for several
basic gestures such as single finger slide to scan or to
run aggregates, two fingers zoom-in to progressively
get more detailed samples of data, rotate to switch the
physical design from row-store to column-store, etc.

3. We identify several optimizations, challenges and op-
portunities in dbTouch systems such as storing and ac-
cessing data in several granularities, prefetching data
and precomputing results during gestures, incremen-
tally changing the storage layout, etc.

4. We provide the first implementation, evaluation and
demo of an early prototype dbTouch system over IOs
for IPad.

Outline. The rest of the paper is organized as follows.
Section 2 discusses the dbTouch vision in more detail along
with descriptions of an initial set of gestures and operators
for data exploration as well as optimization issues and prob-
lems that arise when designing an early dbTouch prototype.
Section 3 discusses implementation details and an early eval-
uation of a prototype over IOs for IPad. Then, Section 4
discusses new opportunities and research directions opened
by the dbTouch vision. Section 5 discusses related work
and Section 6 concludes the paper. Finally, Appendix A
discusses a demo proposal.

2. DBTOUCH
This section gives more details on the dbTouch vision such
as what is the desired behavior and functionality. We discuss
several topics one has to address when designing dbTouch
systems such as data and result visualization, mapping of
touch to data, query processing via slide gestures, optimiza-
tions to enable quick reaction to touch input, data storage
and access options and optimizations as well as formulation
of complex queries.

2.1 Interactive Exploration
One of the main requirements when inspecting data is to get
a quick feeling regarding the quality of the data and possible
patterns and properties. Not necessarily all data is required
at this stage, while at the same time this is not an exact
science; it involves a lot of intuition from the analyst which
is why many people claim that (big) data analysis is a kind
of art [19]. In this way, the key goal of dbTouch is to assist
users with data exploration.

In order to promote data exploration, a dbTouch system
needs to provide an interactive feeling to the user, i.e., giving
the illusion that the user is indeed “touching the data” in
real time. This increases user satisfaction and ease of using
the system. To achieve this goal, dbTouch actions should
not be monolithic actions that consume big piles of data
at a time, resulting in significant delays in response times.
Instead, they should be incremental and adaptive actions
that can give quick results back to the user. In turn, users
react to those results and adjust their gestures accordingly,
effectively promoting interactive data exploration through
the continuous interaction of the user with base data and
results produced.

The above goal of interactive data exploration requires a
combination of both low level query processing actions and
visualization techniques for properly visualizing data and
intermediate results. Good query processing techniques im-
prove the response times of the system when reacting to user
requests (gestures), while good visualization techniques im-
prove the response time of the user when reacting to results
produced by the system.

2.2 Front-end
We begin our description of dbTouch systems by discussing
the front-end part of the system, i.e, what users experience
and what they expect when interacting with a dbTouch sys-
tem. This is drastically different than the standard SQL
interfaces and impacts design decisions for the underlying
dbTouch kernel.

Data Objects. The main interaction of a user with a
dbTouch system comes by interacting with data objects. Ob-
jects appear on the touch screen, while a user can apply
gestures on these objects. For simplicity and ease of pre-
sentation, in the rest of this section, we assume one of the
most straightforward visualization options for data objects,
i.e., data appear in a relational-like way; tables are repre-
sented as (fat) rectangles and attributes are represented as
columns. For example, Figure 1 shows several examples of
column representations and gestures. Data objects are ab-
stract representations of the data. For example, in Figure 1
we see that the actual data is not visible. A single column of

Slide single finger
over a column to scan.

Results appear as
the slide progresses.

Two finger zoom-in
over a column.

See next level of detail
 in sample data.

Two finger zoom-out
over a column.

See previous level of
detail in sample data.

Rotate table.
Change physical design

from column-oriented
to row-oriented

Figure 1: Examples of dbTouch gestures.

a height of only a few centimeters may represent an attribute
in a table with several millions of tuples. The actual data
become visible only during query processing, i.e., by apply-
ing one or more gestures on a data object. As we discuss
later on, the fact that a small object represents many tuples
has implications on data storage and data access options
when designing a dbTouch kernel for data exploration.

dbTouch in Action. A snapshot of our dbTouch proto-
type in action is shown in Figure 2. In general, several ob-
jects may be visible at any time, representing data (columns
and tables) stored in the database. The user has the option
to touch and manipulate whole tables or to visualize and
work on the columns of a table independently for more fine
grained access and analysis. In the example of Figure 2, the
user sees three columns of the same table, each one visual-
ized as a separate rectangle and with a different color. In
the right hand-side screen-shot of Figure 2 the user has ap-
plied a zoom-in gesture over the blue data object for a more
fine grained exploration on this column.

Schema-less Querying. Contrary to traditional database
systems, in a dbTouch system users do not need to know
the database schema. The various data objects convey the
schema information at a high level, giving a glimpse to the
user regarding what kind of data is available for exploration;
just by glancing at the touch screen, users can immediately
know how many tables and columns exist. Applying query
processing gestures is possible without any further knowl-
edge. Discovering the schema in more detail is part of the
exploration process. For example, a single tap anywhere on
a column data object reveals a single column value, allowing
to easily recognize the data type of the column. The exact
value that appears depends on the exact location touched
(to be discussed later on). Similarly, a single tap anywhere
on a table data object reveals a full tuple, allowing to eas-
ily recognize what kind of attributes are contained in this
table. As we discuss later on, users can break down tables
into a several single columns or groups of columns, affect-
ing the underlying storage. Other important properties such
as attribute and table names as well as foreign key relation-
ships between tables can be visualized on demand or perma-
nently depending on user preference. Overall, contrary to
traditional systems, exact schema information in a dbTouch
system is less important to the user; one simply needs to
look at the screen for a column or table which might be
interesting and start touching it.

Figure 2: Screen-shot of dbTouch during an interactive scan via a slide gesture. Before (left side) and after
(right side) a zoom-in gesture on the column represented by the blue object.

Visualizing Data. Naturally, the kind of visual represen-
tation used can vary. Here, we use a simple, relational-like,
representation to introduce the dbTouch vision but other
options are definitely worth studying and may better match
certain data sets depending on the application. This issue
is discussed more in Section 4.

2.3 Slide to Explore
Having discussed how data is visualized, we now continue
to describe how one can start exploring the data via simple
gestures.

Slide. The main query processing gesture in dbTouch is
the slide gesture. It brings several opportunities as well as
several optimization problems regarding both data storage
and data access decisions when designing a dbTouch sys-
tem. The upper left part of Figure 1 depicts an example
of the slide gesture; the idea is that a user slides a single
finger over a data object to point at data to be processed.
In fact, a slide gesture is a collection of several single touch
actions. dbTouch reacts to every single touch and processes
data continuously as the gesture evolves. There are no re-
strictions on how long a slide gesture lasts or on what is the
start and the end point of the gesture. In addition, there
are not restrictions on what is the direction and the speed
of the slide; these are all “query parameters” that the user
may vary and adjust on-the-fly.

Scan and Aggregates. The most basic action when hav-
ing a first exploratory look at a new set of data is achieved
either by having access at the actual data values, i.e., by a
plain scan, or by running a few simple aggregations. In both
cases, dbTouch accesses base data and either delivers the ac-
tual data as is (in the case of a plain scan) or it computes a
running aggregate and continuously updates this result (in
the case that an aggregation query is chosen). Both queries
are realized via a slide gesture over the data object the user
is interested in. The slide speed, the data object size and the
exact area touched determine the actual data of the under-
lying base column or table to be processed. More complex
queries and considerations regarding data access and storage
are discussed later on.

Query Processing. Contrary to traditional systems, query-
ing dbTouch is not a monolithic action; not all data are pro-
cessed in dbTouch, while query processing may stop at any
time. The points touched by the user define the data to be
processed. Users do not declare a query, then pose it and
then wait for an answer. Instead, users define the query
they wish to run by choosing a few query actions (say an
scan or an aggregate for simplicity) and then they start a
slide gesture over a column or a table.

In analogy with traditional database kernels, the slide ges-
ture is equivalent to the next operation where an operator
requests the next tuple to process. The difference is that
instead of having a predefined plan on how to go through
the data, now the users are the ones who trigger those next
actions. They do so at a varying speed and with the op-
tion to go back and forth over the same data areas or even
pause and begin again from an arbitrary data entry; now
users have full control on the data flow of what would be
the equivalent of a query plan in a traditional system.

Slide Example. Figure 2 shows a slide gesture in action
in our dbTouch prototype. The gesture is applied on the
blue data object in Figure 2 and results appear as the ges-
ture progresses. The screen-shot is taken directly from the
IPad where we tested our prototype using the screen-shot
functionality of XCode. Naturally, the actual user finger is
not visible in Figure 2; in this case the user slides a finger
starting from the top of the blue object all the way to the
bottom of the object with a single continuous movement.

Inspecting Results. A key element is how results are
delivered to the user. Figure 2 depicts an example where
results appear as the user touches the data object. Results
appear in place, i.e., as if every single result value pops up
from the position in the data object where the raw value
responsible for this result lies. In fact, result values are typ-
ically shifted slightly sideways from the exact touch location
such as to avoid being hidden below the user finger. Soon
after a result value becomes visible, it subsequently fades
away, making room for more results to be inspected. For
example, in the screen-shot of Figure 2, the result values

which appear at the upper part of the blue data object are
almost faded out; the effect is most visible to the upper most
data values. This is because the slide gesture in this partic-
ular example began from the upper part of the blue object
and continued to the bottom part. In this way, the most
recently touched data entry is responsible for the most bold
result value visible. With results appearing and disappear-
ing in place and dynamically as the gesture evolves, dbTouch
gives the feeling of interactive exploration, i.e., only data en-
tries which are touched are being processed and only when
touched; this is fully under the control of the user.

Challenges. There are several issues regarding how to de-
sign and optimize a dbTouch system with a strong explo-
ration behavior; How should data be stored and accessed?
What happens when the slide patterns such as speed and
directions change? Which data tuples exactly do we process
with every touch? How to maintain quick response times?
The rest of this section discusses initial ideas for those is-
sues and brings up open research problems for the efficient
design of dbTouch kernels.

2.4 From Touch to Tuple Identifiers
A key step in a dbTouch system is in translating the loca-
tion of a touch over a data object to a tuple identifier of
the table or the column represented by the object, i.e., de-
termining which data entry corresponds to the touch and
thus which data entry should be processed next. For ease of
presentation, consider a simplification of the slide gesture,
i.e., a single tap gesture. With a single tap over a data ob-
ject, dbTouch accesses a single data entry, i.e., in the case
of a plain scan query, a single result value appears and fades
away (as in Figure 2). A slide gesture can be seen as mul-
tiple continuous single taps in successive positions of a data
object.

Object Views. In order to translate the location of a touch
to a tuple identifier, dbTouch exploits the view concept of
modern touch-based operating systems. Views are place-
holders for visual objects. In turn, each view can be placed
in a master view, forming hierarchies. Each view has a set
of properties associated with it which are readily accessible
by the touch OS, such as the size of the view, the location
of the view within its master view, what kind of gestures
are allowed over the view, etc. Within each view, visual
objects and gestures can be treated independently to the
master view. The touch OS allows for exact identification
of the location where a touch appears within a view.

Mapping a Touch to a RowID. In dbTouch, each data
object visualized corresponds to a different view. dbTouch
adds a number of properties to each view, e.g., the number
of data entries in the underlying column or table, the data
type(s), the data size, etc. In this way, once a touch is
detected in a given view corresponding to a dbTouch data
object, dbTouch determines the location of the touch within
the corresponding view. Subsequently, it determines the
respective tuple identifier using the knowledge of the current
size of the view and the knowledge of the total number of
tuples in the actual data object; once we know the relative
location based on the current view size, we can calculate the
relative location (i.e., the tuple identifier) within the actual
data object by applying the Rule of Three. Thus, if the

touch location is t, the size of the data object is o and the
number of total tuples is n, then the tuple identifier we are
looking for is id = n ∗ t/o.

When a data object refers to a single column, then only
the height dimension is used to determine tuple identifiers;
this is both for the touch location and for the view size.
When a data object refers to a full table or to a collection
of columns of a given table, then often both dimensions are
needed. For example, with a vertical slide over a full ta-
ble the user would see a similar result as in the example of
Figure 2; the difference is that now dbTouch returns tuple
entries as opposed to single column entries. In this case only
the height dimension is needed. With a horizontal slide, on
the other hand, we use both dimensions to slide through the
attributes values of a given tuple entry; the tuple identifier
is determined via the height, while the attribute seen is de-
termined by the relative width of the touch location within
the view. In addition, if a data object is rotated such as
it lies horizontally, then a horizontal slide is used to scan
through the data. However, nothing changes regarding the
mapping of touches to tuple identifiers; when we rotate an
object, then we only change its positioning within its master
view; thus touches and identifiers calculated relative to the
object view are not affected.

2.5 Data Access and Touch Granularity
We now proceed to discuss in more detail how data is ac-
cessed when applying gestures.

Touch to Explore. The goal of data exploration is not
a complete view of the data, rather a quick glance at the
data and a quick discovery of possible interesting patterns.
The main idea is to guide users to quickly and easily figure
out interesting data areas. Thus, running scans and queries
over complete columns and tables brings slow response times
which hinder exploration.

Touching Samples. In this way, a slide gesture in dbTouch
results in only a sample of the data being processed even if
a user slides through the whole area of a data object. The
sample is distributed over the complete data set depending
on how the slide gesture progresses, i.e., the touch locations
registered determine the data to be processed. Every single
data object visualized as an object of a few centimeters may
correspond to data of say several million entries. However,
for each possible size of a visual object, there is a limited
amount of touch locations which can be registered and thus
there is a limited amount of tuples which can be mapped
and processed. These limitations are there purely due to
physical constraints (e.g., finger and object size). Of course,
a dbTouch system can give the option to the user to on
demand vary the touch granularity, i.e., how many tuples
correspond to each touch, as well as to change the size of
the object. In addition, dbTouch systems need to take into
account the above considerations when deciding how to store
and how to access data. We discuss these issues and options
later on.

Exploration Speed. Assuming for simplicity slide ges-
tures that start from one end of a data object and go with a
steady speed all the way to the opposite end, then the data
entries processed are equally distributed over the complete

data set. A faster slide results in fewer tuples processed as
less touch inputs are registered. On the contrary, a slower
slide over the same data object results in more tuples ac-
cessed; this is because more touches are recognized and more
successive positions can be mapped to tuple identifiers of the
underlying data. In this way, the slide speed determines the
granularity of the data observed.

In addition, there are no restrictions to how a gesture pro-
gresses. For example, after starting with a given speed, users
may pause the gesture, e.g., because an interesting value is
observed. Then, they can go back and forth in this data
area at a much slower speed to observe the data at a more
fine grained granularity. Overall the user has the freedom
to “walk” over the data in any direction and speed. This is
drastically different to how a typical database system pro-
cesses data, i.e., one tuple after the other in the order they
are stored in base data. dbTouch systems need to follow
the user touch which might mean that some data entries are
skipped during query processing but there is no guarantee
that the user will not decide to go back and request those
entries a few seconds later. This has implications to both
how we should store and how we should access data in a
dbTouch system. This issue is discussed in more detail in
the next sections.

Zoom-in/Zoom-out. As we discussed, a given object size
restricts the amount of data a user can access. Users may
change the size of an object using the zoom-in and the zoom-
out gestures. This allows to increase and to decrease respec-
tively the granularity of the data processed from a given data
object, i.e., it can be seen as accessing varying samples of
the same data. Figure 1 depicts examples of those gestures.
With a zoom-in gesture the respective data object becomes
bigger. As a result, there is more area to touch and thus a
more fine grained access to the underlying data; with a big-
ger visual size, there is a bigger number of positions to map
to tuple identifiers. For example, the right hand-side screen-
shot in Figure 2 depicts a slide over the blue column after
a zoom-in operation; more data results appear compared to
the slide in the left hand-side screen-shot in Figure 2. The
zoom-out gesture works in exactly the opposite way, result-
ing to a smaller data object and thus to a more high level
view of the data when applying slide gestures. Zoom-in and
zoom-out gestures can be used in combination with slide
gestures of a varying speed for significant flexibility when
exploring data, allowing the user to drill down on selected
data areas adaptively and on demand.

2.6 Storing and Accessing Data
We continue the dbTouch introduction with a discussion on
ideas regarding how data should be stored.

Gesture Evolution. A key element in dbTouch is how
we scroll through the data. Underlying storage and access
methods need to be able to adjust to gesture patterns and
variations. The goal is to improve the data access time a
dbTouch system needs in order to react to a single touch.
The progression of the user gestures defines how fast we go
from one value entry to the next; users may change the slide
speed over time, they may change the direction of the slide or
they may even pause the gesture temporarily. In addition,
there are no restrictions regarding the start and the end

point of a slide gesture. Similarly, there is no restriction
regarding how many times a single gesture may go over the
same area of a data object.

All the parameters above call for highly adaptive methods
for storing and accessing data in order to be able to cope
with the numerous variations in gesture characteristics; any
data may be accessed at any time.

Physical Layout. dbTouch does not pose any particu-
lar restrictions on the underlying storage model. It can be
row-store, column-store or a hybrid format. One useful de-
sign decision we use in our current prototype is that fields
are fixed-width per attribute. This technique has been pio-
neered in modern column-stores and is currently applied to
hybrid systems as well. Essentially, using fixed-width values
per attribute allows for a much easier calculation of data
locations without having to access metadata information as
it happens with more traditional slotted pages layouts. In
dbTouch, fixed-width fields allow for a faster mapping of
touch locations to tuple identifiers. In this way, the under-
lying storage layout used in our current dbTouch is matrixes.
Each matrix may contain one or more columns and each col-
umn contains fixed-width fields. The matrixes are dense and
each matrix is associated with a given data object.

Sample-based Storage. As we discussed, query process-
ing in dbTouch via slide gestures is equivalent to processing
a sample of the underlying data. Even when a slide touches
the whole area of the target data object, the size of the ob-
ject and the speed of the gesture progression result in a given
sample factor. In a traditional system, data is stored in a
single base column or table. However, in dbTouch, access-
ing data at a coarse granularity directly from the base data
may result in loading a significant amount of data which is
not needed for the current query. As a result performance
is hindered and the user does not get all the performance
benefits of not touching the whole data set.

A better approach would be to store separately various dif-
ferent samples of the base data and depending on the object
size and gesture speed feed from the proper copy, minimizing
the auxiliary data reads. Similar ideas have appeared in Sci-
borg [40] about storing hierarchies of samples. In dbTouch,
however, the problem becomes more complex as, given the
potential continuous variation of the slide parameters, dy-
namically choosing and switching between various copies of
the data becomes a critical issue.

Prefetching Data. An interesting optimization is that
of prefetching when a slide gesture pauses or slows down.
dbTouch can extrapolate the gesture progression (speed and
direction) and fetch the expected entries such that they are
readily available if the gesture resumes. Prefetching is more
important when a slide gesture is used for aggregation op-
erations where more computation is involved or of course if
the slide gesture is used for more complex queries involving
several operators and data objects (to be discussed later on).

Caching Data. In addition, caching can be exploited such
that dbTouch is ready if the user decides to re-examine a
data area already seen. dbTouch needs to observe the ges-
ture patterns and adjust the caching policy according to the

expected progression of the gesture. In addition, caching
may be used in order to create a new copy (sample) of the
data which will allow dbTouch to answer future queries re-
questing data at a similar granularity.

Indexing. Creating and exploiting indices for dbTouch sys-
tems is an exciting topic. When querying an indexed column
or sets of columns, then the slide gesture becomes the equiv-
alent of an index scan. Having a hierarchy of samples di-
rectly affects indexing decisions; for example, dbTouch can
maintain a separate index for each sample level, treating
each copy separately depending on how often index support
is needed for this copy. Similarly, switching between the var-
ious indexes during a single slide of a varying speed becomes
a challenging issue.

2.7 Interactive Summaries
A more advanced use of the slide gesture in dbTouch is
the exploitation of interactive summaries. The idea is that
when sliding through a data object, dbTouch returns a sum-
mary of x items as opposed to simply returning a single
data entry which corresponds to the exact touch location.
The summary is defined as an aggregate value of several
consecutive data entries. When during a slide we register
position p which corresponds to tuple identifier idp, then
dbTouch scans all entries within the tuple identifier range
[idp−k, idp +k] and calculates a single aggregate value. Pa-
rameter k can be defined by the users according to their ex-
ploration requirements as well as by system parameters. For
example, when fetching a given data item, we would like to
also exploit all items within the same cache line. Similarly,
the kind of aggregation used can be defined by the user. A
good default choice is to perform an average aggregation.

Essentially, interactive summaries open two opportunities
for data exploration. First, they allow users to “touch” and
inspect more data with each single touch. Second, they
allow for a quick inspection of properties and patterns on
small/controlled groups of data, while also observing dif-
ferences in patterns across different data areas of the same
object on demand.

2.8 Schema and Storage Layout Gestures
Part of the exploration process involves changing the schema
or the layout of the data for organization or for performance
reasons. With the data visualized as objects in a touch
screen, users can move data around using pan gestures and
group or ungroup specific data objects. For example, one
can create a table by drag and drop actions in a table place-
holder object where independent columns can be dropped.

More interestingly, dbTouch allows users to vary the layout
of individual tables using the rotate gesture (see Figure 1).
Rotating a row-oriented table changes its physical layout
to a column-store structure by projecting all attributes to
individual arrays (and vice versa). The effects of the rota-
tion gesture are also applied by simply rotating the tablet
device itself for an even more interactive experience. Simi-
larly, a user can project a specific column out of a fat table
by dragging the column out of the table. It can be sent
to an individual array or simply to a smaller table allow-
ing the user to experience faster response times by going
only through the needed data. The net result is that the

dbTouch user can take control over performance parameters
in an intuitive and interactive way.

A critical parameter is the interactive and adaptive behavior
that dbTouch systems should provide. Changing the layout
can be done in steps as it is in general an expensive oper-
ation, requiring a full copy of the data. Depending on the
size of the current object, dbTouch should choose to create
the new format for only a sample of the data, giving back to
the user a quick response and new data object(s) to query.
When and if the user requests for more detail within the new
object, e.g., with a zoom-in gesture, then more data can be
retrieved from the old layout.

2.9 Query Plans and Complex Queries
Up to now, we mainly discussed about simple scans using
the slide gesture. However, any kind of complex query is
possible.

Complex Queries. For example, the slide gesture can be
used in order to run any kind of aggregate over a column
object or to perform selections by posing a where restriction
to the scan. In addition, multi-column query plans are also
possible. Again it is a matter of enabling the proper ac-
tions. For example, we can enable where and select actions
on one or more columns as well as we can enable a join for a
pair of columns. Then, with the slide gesture over one of the
columns used with a where action, a user can go through the
data and drive the query processing steps. The tuple identi-
fiers captured in the object where we apply the slide gesture
define the data processed. Essentially, the same discussion
as the one we did for the slide gesture for scans holds here as
well, i.e., regarding slide speed, direction, object sizes, etc;
the only difference is that here the system needs to perform
a more complex computation per data entry as opposed to
simply visualizing the touched entry as in the case of a scan.

Joins. Maintaining the interactive behavior during join
queries is a challenging topic. The join is primarily a block-
ing operator as the hash-join is the typical choice. The same
is true for hash-based grouping. However, in dbTouch we do
not know up front all the data we are going to process. This
is only known as the gesture evolves. Subsequently, we can-
not use a hash-join as we do not know which data we should
use to build the hash table. Of course, we could use the
whole input but this would result in a significant delay. As
such, exploiting non blocking options is a necessary path in
dbTouch. Similarly, caching of hash tables across the various
sample copies can enhance future queries.

Optimization. With more complex queries than plain scans
and aggregates, optimization plays a crucial role. This is
for the same reasons as in traditional databases. The or-
der of operators and the actual physical operators used can
have a significant impact. However, contrary to traditional
databases, in a dbTouch system we do not know up front
how much data we are going to process. When a user initi-
ates a slide gesture for a complex query, only a small part
of the data may be processed or even all of the data may be
processed.

Not knowing which part of the data is going to be pro-
cessed makes optimization decisions challenging as for dif-

Operating
System

Recognize Touch

Recognize Gesture

dbTouch

Map touch to data

Execute

Figure 3: dbTouch system layers.

ferent parts of the data in the same table, different prop-
erties may apply. In this way, dbTouch brings an inter-
esting scenario for adaptive optimization approaches that
interleave with query execution. dbTouch needs to figure
out the proper optimization decisions on-the-fly, while still
maintaining good response times. At the same time, as the
slide direction and speed evolves dbTouch needs to adapt
these decisions to the new data which is processed. Contrary
to adaptive approaches for traditional databases, dbTouch
does not control the data flow and thus it is much harder
to make reliable decisions regarding when to switch to a
different query plan.

3. DBTOUCH PROTOTYPE
In this section, we briefly discuss the details of our imple-
mentation over IOs for IPad and we provide an early evalu-
ation. We build on top of IOs SDK 5.1 (9B176) and we test
on IPad 1, while our development environment is XCode
4.3.2 (4E2002).

Implementation. Our current dbTouch prototype is es-
sentially a small prototype database kernel implemented on
top of IOs in objective C. In many ways it resembles a hy-
brid kernel where data is stored in fixed-width dense arrays
or matrixes. Similarly to the typical SQL input, parser,
optimizer, execution flow of modern database systems, the
dbTouch prototype goes through a flow that begins with a
touch input, and continues with gesture recognition as op-
posed to parsing. Then, depending on the gesture, the loca-
tion touched, the size of the object touched, etc., the proper
dbTouch execution methods are called.

Figure 3 shows a high level view of the dbTouch stack and
how the various system layers interact. dbTouch feeds from
the operating system; once a touch is registered by the op-
erating system, dbTouch takes action to find which data
should be processed and what kind of actions should be
performed. This flow is not per query as it is in database
systems; instead, dbTouch goes through these steps for ev-
ery touch input on a data object. Our current prototype
supports several of the gestures/operators seen in the previ-
ous section such as slide or single tap for scan, aggregation
and interactive summaries as well as zoom-in/zoom-out for
a more detailed or a more high level exploration.

Evaluation. Evaluating a dbTouch system is a challenge by
itself mainly due to the interactive nature of the paradigm

 0

 10

 20

 30

 40

 50

 60

 0 0.5 1 1.5 2 2.5 3 3.5 4

#
 o

f
d
a
ta

 e
n
tr

ie
s
 r

e
tu

rn
e
d

Time to complete gesture (secs)

a) Vary gesture speed

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20 25

#
 o

f
d
a
ta

 e
n
tr

ie
s
 r

e
tu

rn
e
d

Object size (cms)

b) Vary object size

Figure 4: Effect of varying object size and slide ges-
ture speed during a slide for interactive summaries.

where a user continuously gives input to the system and
drives query processing actions via touch gestures. To give a
glimpse on the interaction and exploration properties of our
current dbTouch prototype, we provide two experimentation
examples which are characteristic of the exploration process.

Varying Gesture Speed. The first experiment observes
what happens with a varying speed of applying the basic
slide gesture for an interactive summaries query, using an
average aggregation and 10 data entries for each summary.
The set-up is as follows. A rectangle object in a vertical po-
sition represents a column of 107 integer values. The height
of the object is 10 centimeters. We apply the slide gesture
starting from the top end of the object and finishing at the
bottom end. We repeat the gesture 3 times. Each time the
gesture is completed with a different speed and each time
we measure the amount of data entries that appear. Figure
4(a) shows the results. As we slow down the speed of the
gesture, we are able to observe/process more data. dbTouch
captures more touch input and it can map this input to ob-
ject identifiers of the underlying data. In this way, a varying
gesture speed allows drilling down to detail or getting a high
level view of the data. It gives users the power to explore the
data and to continuously adjust the exploration properties
in an interactive way as results appear.

Varying Object Size. In our second experiment, we test
what happens as the size of a data object changes. The
set-up is the same as before. This time we apply a zoom-in
gesture to progressively increase the size of the data object.
For each size, we perform a slide gesture with the same speed
(from top to bottom) and observe the amount of data pro-
cessed. At each step we double the size of the object and we
take double the time to complete the slide gesture. Figure
4(b) shows the results. By adjusting the object size we al-
low for more detail; as the size increases, the same gesture
speed allows the inspection of more data. Similarly to our
discussion in the previous paragraph, via adjustments of the
object size a user can interactively get a more fine grained
or a more high level view of the data on demand.

Summary. Overall, dbTouch provides a promising play-
ground to promote interactive data exploration; data ana-
lysts can get a quick feeling of the data on demand, while
continuously adjusting the exploration parameters and while
using only intuitive touch input as opposed to writing SQL
scripts.

4. CHALLENGES AND OPPORTUNITIES
The previous sections described the dbTouch vision and dis-
cussed several challenges when designing the individual com-
ponents of a dbTouch kernel. Here, we discuss an additional
set of more broad challenges and opportunities.

Interactive Behavior. Most prominently, developing com-
plete touch-based database kernels requires in depth study
of optimization and algorithmic choices. The main challenge
is in continuously reacting to user input gestures and prop-
erly anticipating the next move such as to avoid big stalls. In
all cases, the response times to touch events need to be kept
low. The whole design of dbTouch kernels should be geared
towards an interactive and adaptive behavior. There should
always be a maximum possible wait time for a single touch
regardless of the query and the data sizes. Approximate
query processing in combination with dbTouch may be an
interesting direction, i.e., results appear within the expected
response time and then they are continuously refined.

Data Visualization. In addition, studying dbTouch across
various application-specific data visualization formats and
the implications this brings for designing dbTouch kernels is
of high importance. The relational-like visualization we used
to describe dbTouch in this paper is a generic format but
application-specific formats can enhance the user experience
as well as the ability to quickly interpret the data. The data
visualization community has tremendous results in this area.
For example, maps can be used to cluster data based on
geographical information. Data may be colored to quickly
determine patterns, outliers, etc. In addition, graphs and
mind-maps may be used to depict trends and correlations.
Regardless of the visualization format, dbTouch needs to
maintain its adaptive character and the goal for interactive
response times. The main challenge is whether we can create
a generic dbTouch kernel which can be used as a back-end
to various visualization formats.

Remote Processing. Another interesting direction is the
option of remote processing when the touch device is an in-
terface to a cloud or server facility which does the bulk of
the query processing. For example, the server may store
the base data and the big samples, while the touch device
may store only small samples. Then, during query process-
ing dbTouch may use both local and remote data to pro-
cess queries; as users request more detail, more requests are
shipped to the server. Still, though, dbTouch should guar-
antee low response times. However, sending a new remote
request for every single touch input of a long gesture will
lead to extensive administration and communication costs.
As a result, dbTouch needs to carefully exploit both local
and remote data, i.e., use local data to feed partial answers,
while in the mean time more fine-grained answers are pro-
duced and delivered by the server.

Alternative Interfaces. Finally, studying other forms
of input and its implications in creating interactive data-
base kernels is another exciting opportunity. Motion input,
speech recognition as well as combinations of those input
methods are some of the options. As in the case of visu-
alization formats, the main challenge here is whether it is
possible to create a generic adaptive kernel which can be
adjusted easily for any input method.

5. RELATED WORK
This paper takes inspiration from several research areas re-
lated to data management.

Data Exploration. Data exploration has seen significant
support during the past decade. Several researchers argue
towards exploration based database kernels and propose sev-
eral directions such as sampling based kernels [3, 31, 40],
adaptive indexing [26] and adaptive data loading [24, 4, 5].
Overall, this is a quite promising and largely unexplored re-
search area. dbTouch complements ongoing research efforts
by providing a promising alternative when it comes to how
users interact with an exploration based database kernel.
Ideas such as sampling, adaptive indexing or loading can be
exploited in the dbTouch context with new challenges on
how to adapt to the dynamic touch patterns in gestures.

Online Aggregation. Online aggregation [22, 38] is also
related to dbTouch. In online aggregation the system con-
tinuously returns results as they are created. A confidence
metric is also calculated and reported, allowing the user to
terminate query processing when confidence reaches satis-
factory levels. Online aggregation techniques can certainly
be exploited in dbTouch; dbTouch brings additional chal-
lenges as the user drives the speed of requesting more data
and determines the data to be processed dynamically.

Visual Analytics. The idea that simple text mode can
hurt usability is not new. Polaris is the pioneering system
from Stanford University for visual analytics [41, 42]. In Po-
laris, there are two distinct features to ease usability and ex-
ploration: (a) users can synthesize SQL queries by drag and
drop actions and (b) results appear directly in the proper
visual format. For example, results can appear directly in a
bar graph or in other graph formats depending on the kind
of data. The ideas pioneered in Polaris and later commer-
cialized in the Tableau system are directly in line with the
dbTouch vision. In addition to Tableau, there are more com-
mercial systems exploiting similar ideas; in particular, Data
Clarity and VisuaLinks from Visual Analytics Inc. and the
Visual Analytics platform by SAS. All these systems have
the same high level goal; they try to provide an easy way to
construct queries graphically and to visualize results using
the proper format according to the result data.

In all cases above, the underlying database system is a tra-
ditional system; what changes is the input method and the
visualization of the results. What dbTouch brings is the idea
of building database kernels to inherently support touch in-
terfaces and interactive exploration at their core, taking vi-
sual analytics one major step further by allowing systems to
increase their interactive and exploratory character. Users
in dbTouch do not pose a traditional query by pointing in
an object and then waiting for an answer. Instead, they
drive the query processing actions, working on top of data
samples and by continuously defining (touching) the data to
be processed next; they have full control of the exploration
process.

Data3. Data3 is a recent system which exploits motion
sensing [23]. Data3 builds on top of an existing stream en-
gine and allows users to interact with the stream engine
using gestures as opposed to using a declarative language.

Users can define streams and pose continuous queries via
gestures. Essentially, Data3 implements an interface to an
existing and traditional system. This is still an exciting and
crucial step. However, when it comes to database architec-
tures, nothing changes regarding how data is processed or
the ability of the system to adapt to user behavior.

On the contrary, the dbTouch vision is about redesigning
systems to exploit the new opportunities that appear with
the emerging input methods such as touch and motion sens-
ing. In dbTouch, we do not pose traditional queries using
a new input method; instead, we envision new ways to pro-
cess data and a new query processing paradigm all together;
users drive the low level query processing actions by pointing
to the data that should be processed in every query process-
ing step. This changes drastically the way we should design
database kernels and brings several opportunities and chal-
lenges for data exploration.

6. CONCLUSIONS
Data exploration has emerged as a critical need in our effort
to handle big data and the new stream of applications that
rely on data management. Data exploration tools are meant
to assist when we are in need to quickly analyze data, not
necessarily knowing exactly what we are looking for; the re-
sults of one query inspire the formulation of the next query.
At the same time, touch interfaces have proven to be ex-
tremely successful mainly by promoting usability.

In this paper, we introduce dbTouch, a new research direc-
tion towards touch-based database kernels, tailored for in-
teractive data exploration in the big data era. We propose
to rethink database architectures towards designs which can
cope with the different needs posed by a full-blown touch-
based database system. This paper discusses the dbTouch
vision and challenges along with several gestures and ac-
companying exploration-based database operators driven by
touch patterns. In addition, we present a dbTouch proto-
type over IOs for IPad, showcasing the simplicity and intu-
itive nature of dbTouch. Overall, dbTouch opens a new and
completely unexplored territory for database researchers in
the path towards big data analytics and insights.

7. REFERENCES
[1] A. Abouzeid, K. Bajda-Pawlikowski, D. J. Abadi,

A. Rasin, and A. Silberschatz. Hadoopdb: An
architectural hybrid of mapreduce and dbms
technologies for analytical workloads. PVLDB,
2(1):922–933, 2009.

[2] F. N. Afrati, A. D. Sarma, D. Menestrina, A. G.
Parameswaran, and J. D. Ullman. Fuzzy joins using
mapreduce. In ICDE, pages 498–509, 2012.

[3] S. Agarwal, A. Panda, B. Mozafari, S. Madden, and
I. Stoica. Blink and it’s done: Interactive queries on
very large data. In PVLDB, 2012.

[4] I. Alagiannis, R. Borovica, M. Branco, S. Idreos, and
A. Ailamaki. Nodb: efficient query execution on raw
data files. In SIGMOD, 2012.

[5] I. Alagiannis, R. Borovica, M. Branco, S. Idreos, and
A. Ailamaki. Nodb in action: Adaptive query

processing on raw data. PVLDB, 5(12):1942–1945,
2012.

[6] R. Barber, P. Bendel, M. Czech, O. Draese, F. Ho,
N. Hrle, S. Idreos, M.-S. Kim, O. Koeth, J.-G. Lee,
T. T. Li, G. M. Lohman, K. Morfonios, R. Müller,
K. Murthy, I. Pandis, L. Qiao, V. Raman, R. Sidle,
K. Stolze, and S. Szabo. Business analytics in (a)
blink. IEEE Data Eng. Bull., 35(1):9–14, 2012.

[7] P. A. Bernstein, C. W. Reid, and S. Das. Hyder - a
transactional record manager for shared flash. In
CIDR, pages 9–20, 2011.

[8] P. Boncz, M. Zukowski, and N. Nes. MonetDB/X100:
Hyper-Pipelining Query Execution. In CIDR, 2005.

[9] S. Chaudhuri. What next? a half-dozen data
management research goals for big data and cloud. In
PODS, 2012.

[10] S. Chen, P. B. Gibbons, and S. Nath. Rethinking
database algorithms for phase change memory. In
CIDR, pages 21–31, 2011.

[11] P. Cudré-Mauroux, E. Wu, and S. Madden. The Case
for RodentStore: An Adaptive, Declarative Storage
System. In CIDR, 2009.

[12] C. Curino, E. P. C. Jones, R. A. Popa, N. Malviya,
E. Wu, S. Madden, H. Balakrishnan, and
N. Zeldovich. Relational cloud: a database service for
the cloud. In CIDR, pages 235–240, 2011.

[13] J. Dittrich and A. Jindal. Towards a one size fits all
database architecture. In CIDR, pages 195–198, 2011.

[14] A. Doan, R. Ramakrishnan, and A. Y. Halevy.
Crowdsourcing systems on the world-wide web.
Commun. ACM, 54(4):86–96, 2011.

[15] M. J. Franklin, D. Kossmann, T. Kraska, S. Ramesh,
and R. Xin. Crowddb: answering queries with
crowdsourcing. In SIGMOD, 2011.

[16] G. Graefe, F. Halim, S. Idreos, H. Kuno, and
S. Manegold. Concurrency control for adaptive
indexing. PVLDB, 5(7):656–667, 2012.

[17] M. Grund, P. Cudré-Mauroux, J. Krüger, S. Madden,
and H. Plattner. An overview of hyrise - a main
memory hybrid storage engine. IEEE Data Eng. Bull.,
35(1):52–57, 2012.

[18] F. Halim, S. Idreos, P. Karras, and R. H. C. Yap.
Stochastic database cracking: Towards robust
adaptive indexing in main-memory column-stores.
PVLDB, 5(6):502–513, 2012.

[19] P. Hanrahan. Analytic database technologies for a new
kind of user - the data enthusiast. In SIGMOD, 2012.

[20] N. Hardavellas, I. Pandis, R. Johnson, N. Mancheril,
A. Ailamaki, and B. Falsafi. Database servers on chip
multiprocessors: Limitations and opportunities. In
CIDR, pages 79–87, 2007.

[21] S. Harizopoulos, M. A. Shah, J. Meza, and
P. Ranganathan. Energy efficiency: The new holy grail
of data management systems research. In CIDR, 2009.

[22] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online
aggregation. In SIGMOD Conference, pages 171–182,
1997.

[23] S. Hirte, A. Seifert, S. Baumann, D. Klan, and K.-U.
Sattler. Data3 - a kinect interface for olap using
complex event processing. In ICDE, pages 1297–1300,
2012.

[24] S. Idreos, I. Alagiannis, R. Johnson, and A. Ailamaki.
Here are my data files. here are my queries. where are
my results? In CIDR, pages 57–68, 2011.

[25] S. Idreos, F. Groffen, N. Nes, S. Manegold, K. S.
Mullender, and M. L. Kersten. Monetdb: Two decades
of research in column-oriented database architectures.
IEEE Data Eng. Bull., 35(1):40–45, 2012.

[26] S. Idreos, M. Kersten, and S. Manegold. Database
Cracking. In CIDR, 2007.

[27] S. Idreos, M. Kersten, and S. Manegold. Updating a
Cracked Database. In SIGMOD, 2007.

[28] S. Idreos, M. Kersten, and S. Manegold.
Self-organizing Tuple-reconstruction in Column-stores.
In SIGMOD, 2009.

[29] S. Idreos, S. Manegold, H. Kuno, and G. Graefe.
Merging what’s cracked, cracking what’s merged:
Adaptive indexing in main-memory column-stores.
PVLDB, 4(9):585–597, 2011.

[30] A. Kemper and T. Neumann. Hyper: A hybrid
oltp&olap main memory database system based on
virtual memory snapshots. In ICDE, 2011.

[31] M. L. Kersten, S. Idreos, S. Manegold, and E. Liarou.
The researcher’s guide to the data deluge: Querying a
scientific database in just a few seconds. PVLDB,
4(12):1474–1477, 2011.

[32] N. Khoussainova, M. Balazinska, and D. Suciu.
Perfxplain: Debugging mapreduce job performance.
PVLDB, 5(7):598–609, 2012.

[33] W. Lang and J. M. Patel. Towards eco-friendly
database management systems. In CIDR, 2009.

[34] D. B. Lomet, A. Fekete, G. Weikum, and M. J.
Zwilling. Unbundling transaction services in the cloud.
In CIDR, 2009.

[35] A. Marcus, E. Wu, S. Madden, and R. C. Miller.
Crowdsourced databases: Query processing with
people. In CIDR, pages 211–214, 2011.

[36] R. Müller, J. Teubner, and G. Alonso. Data processing
on fpgas. PVLDB, 2(1):910–921, 2009.

[37] A. Nandi and H. V. Jagadish. Guided interaction:
Rethinking the query-result paradigm. PVLDB,
4(12):1466–1469, 2011.

[38] N. Pansare, V. R. Borkar, C. Jermaine, and
T. Condie. Online aggregation for large mapreduce
jobs. PVLDB, 4(11):1135–1145, 2011.

[39] A. G. Parameswaran, H. Garcia-Molina, H. Park,
N. Polyzotis, A. Ramesh, and J. Widom. Crowdscreen:
algorithms for filtering data with humans. In
SIGMOD Conference, pages 361–372, 2012.

[40] L. Sidirourgos, M. L. Kersten, and P. A. Boncz.
Sciborq: Scientific data management with bounds on
runtime and quality. In CIDR, 2011.

[41] C. Stolte, D. Tang, and P. Hanrahan. Polaris: A
system for query, analysis, and visualization of
multidimensional relational databases. IEEE Trans.
Vis. Comput. Graph., 8(1):52–65, 2002.

[42] C. Stolte, D. Tang, and P. Hanrahan. Query, analysis,
and visualization of hierarchically structured data
using polaris. In KDD, pages 112–122, 2002.

[43] M. Stonebraker, D. Abadi, A. Batkin, X. Chen,
M. Cherniack, M. Ferreira, E. Lau, A. Lin, S. Madden,
E.O’Neil, P. O’Neil, A. Rasin, N. Tran, and S. Zdonik.
C-Store: A column oriented DBMS. In VLDB, 2005.

[44] P. Triantafillou. Anthropocentric data systems.
PVLDB, 4(12), 2011.

APPENDIX
A. DBTOUCH DEMO
Here, we describe a demo proposal for dbTouch. The main
goal of dbTouch is to enable data exploration through inter-
active touch-based database kernels. In this way, the demo
focuses on exposing the exploration properties and oppor-
tunities of dbTouch to the audience.

Set-up and Scenarios. The main idea for the demo is
that the audience will get direct access to the dbTouch pro-
totype. We will provide our development IOs device for this
purpose (IPad 1). Data will be loaded in a tablet device
and the audience will get the chance to use the system and
interact via gestures to query and explore the data. We will
provide alternative data sets with a varying set of properties
and patterns. The audience attending the demo will have
the task of discovering these properties by interacting with
dbTouch via gestures.

Exploration Contest: dbTouch Vs. DBMS. In addi-
tion, the audience attending the demo can participate in an
exploration contest. We will provide a laptop installed with
the open-source column store DBMS, loaded with the same
data sets as dbTouch. Two audience members will simulta-
neously start exploring the data sets; one member will be
using the tablet dbTouch prototype, while the other mem-
ber will be using the SQL interface of the DBMS on the
laptop. Both audience members will be free to perform any
kind of query processing actions, i.e., to apply any kind of
supported gestures in dbTouch and to fire any kind of SQL
queries in the DBMS. The winner is the one who can first
figure out the data properties and patterns.

Summary. Overall, the demo will allow users to play with
dbTouch on an IPad and to directly compare with a DBMS
experience for the same tasks.

