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ABSTRACT
Crowdsourcing enables programmers to incorporate “human com-
putation” as a building block in algorithms that cannot be fully
automated, such as text analysis and image recognition. Simi-
larly, humans can be used as a building block in data-intensive
applications—providing, comparing, and verifying data used by
applications. Building upon the decades-long success of declara-
tive approaches to conventional data management, we use a similar
approach for data-intensive applications that incorporate humans.
Specifically, declarative queries are posed over stored relational
data as well as data computed on-demand from the crowd, and the
underlying system orchestrates the computation of query answers.

We present Deco, a database system for declarative crowdsourc-
ing. We describe Deco’s data model, query language, and our pro-
totype. Deco’s data model was designed to be general (it can be
instantiated to other proposed models), flexible (it allows methods
for data cleansing and external access to be plugged in), and prin-
cipled (it has a precisely-defined semantics). Syntactically, Deco’s
query language is a simple extension to SQL. Based on Deco’s data
model, we define a precise semantics for arbitrary queries involv-
ing both stored data and data obtained from the crowd. We then
describe the Deco query processor which uses a novel push-pull
hybrid execution model to respect the Deco semantics while coping
with the unique combination of latency, monetary cost, and uncer-
tainty introduced in the crowdsourcing environment. Finally, we
describe our current prototype, and we experimentally explore the
query processing alternatives provided by Deco.

1. INTRODUCTION
Crowdsourcing [12, 31] uses human workers to capture or gen-

erate data on demand and/or to classify, rank, label or enhance ex-
isting data. Often, the tasks performed by humans are hard for a
computer to do, e.g., rating a new restaurant or identifying features
of interest in a video. We can view the human-generated data as
a data source, so naturally one would like to seamlessly integrate
the crowd data source with other conventional sources, so the end
user can interact with a single, unified database. And naturally one
would like a declarative system, where the end user describes the
needs, and the system dynamically figures out what and how to
obtain crowd data, and how it must be integrated with other data.
This overall vision, and the underlying issues and challenges, were
outlined in our earlier paper [27].

In this paper, we realize our earlier vision to present Deco (short
for “declarative crowdsourcing”), a database system that answers
declarative queries posed over stored relational data, the collective
knowledge of the crowd, as well as other external data sources. Our
goal is to make Deco appear to the end user as similar as possible to
a conventional database system (a relational one in our case), while

hiding many of the complexities of dealing with humans as data
sources (e.g., breaking down large tasks into smaller ones, posting
tasks to a marketplace and pricing them, dealing with latency, and
handling errors and inconsistencies in human-provided data).

We describe the Deco data model, the query language and se-
mantics, and the query processor.

While the idea of declarative access to crowd data is appealing
and natural, there are significant challenges to address:
• How do we resolve disagreeing human opinions? For in-

stance, if we collect five ratings for a movie, we may want
to give the end user the average, but if we collect five phone
numbers, we may want to instead eliminate duplicates. How
does the schema designer (or DBA) specify what to do, and
when during query execution do we resolve the opinions?
• How does the database system interact with the human work-

ers (the crowd)? For instance, to get restaurant information,
we may want Deco to give the worker the name of a restau-
rant (e.g., “Bouchon”), and ask for its cuisine. But in other
cases Deco may want to give the worker the cuisine (e.g.,
“French”), and ask for restaurants serving that cuisine. Or
Deco may ask for cuisine and rating given the name of a
restaurant. How does the schema designer define the avail-
able options, which we can view as different “access meth-
ods”? Are there restrictions on the access methods that can
be defined? And how does Deco decide what access method
to use for a given query? How do we enable Deco to use
external sources in addition to the crowd? For instance, we
may want Deco to be able to use an information extraction
program that, given a restaurant, extracts a phone number
from a webpage.
• What is the right data model and query language for a crowd-

sourced database? We already argued for a model and end
user language that are as close as possible to conventional
ones, but extensions are needed to deal with the uncertain-
ties and ambiguities of crowd data. For instance, since there
is an “endless supply” of crowd data, the end user (or the
schema designer) needs to circumscribe what is needed. For
instance, the user may state that five answer tuples are suf-
ficient, or that five opinions are enough to report an average
movie rating. How are such constraints/guidelines defined,
and by whom?
• What data should the crowdsourced database system actually

store? Is it cleansed data, or is it the uncleansed data? If it
is cleansed data, then how do we update it as new opinions
arrive? If it is uncleansed data, what does the user see, when
is it computed, and how can it be stored compactly? Should
there be a notion of crowdsourced data becoming stale?



• How does the query processor execute crowd queries? How
does it deal with the complexity of having several access
methods to the crowd? How does it deal with the latency
of crowdsourcing services? How does it deal with the reso-
lution of disagreement or uncertainty in answer tuples? How
does it ensure that constraints (such as a desired number of
answer tuples) are met?

Our Deco design addresses these questions, trying to strike a bal-
ance between too much generality, and achieving an elegant, im-
plementable system. While it may not be immediately apparent to
the reader, the design of Deco required significant effort as well as
consideration of many possible alternative designs. In particular,
we will argue in our related work section (Section 7) that Deco is
more principled, general, and flexible than recent approaches for
declarative crowdsourcing [14, 24, 25].

In summary, our contributions are the following:
• We present a data model for Deco (Section 2) that is practi-

cal, based on sound semantics, and derived from the familiar
relational data model. We define the precise semantics of the
data model (Section 2.6). We also describe important data
model extensions (Section 2.7).
• We describe the Deco query language (Section 3) that mini-

mally departs from SQL, and expresses the constraints nec-
essary for crowdsourcing.
• We present our design for the query processor (Section 4)

which uses a novel push-pull hybrid execution model.
• We experimentally analyze queries running on the Deco pro-

totype (Section 6). We show that our Deco prototype sup-
ports a large variety of plans with varying performance, and
we gain some valuable insights in the process.
• We compare Deco’s design with other declarative crowd-

sourcing systems, and survey other related work (Section 7).

1.1 Running Example
Throughout the paper we use a running example that is by design

simple and a bit contrived, yet serves to illustrate the major chal-
lenges of declarative crowdsourcing, and to motivate our solutions
to these challenges. We (as the users) are interested in querying a
(logical) database containing information about restaurants. Each
restaurant may have one or more addresses (multiple addresses in-
dicate a chain), and each restaurant may serve one or more cuisines.
We also have ratings, which are associated with restaurant-address
pairs since different outlets of a chain may be rated differently. We
will see that Deco’s conceptual schema encourages denormalized
relations, so our restaurant information can be captured in a single
logical relation:

Restaurant(name,address,rating,cuisine)

The catch is that our database may not contain a full set of in-
formation to begin with, in fact it may not contain any information
at all! In response to queries, we obtain information from external
sources—including humans—using a set of “fetch rules” (formal-
ized as part of our data model). For example, given a restaurant and
an address we might seek ratings, or given a rating and a cuisine we
might seek restaurant-address pairs. We will shortly see many more
examples of fetch rules, as well as other aspects of Deco relations,
such as how we deal with the uncertainty resulting from inconsis-
tencies in the information we obtain.

We add a second (logical) relation containing address informa-
tion. We assume a restaurant’s address may be encoded in some
fashion—perhaps as a string or a geolocation—but we may want to
pose queries involving, say, cities or zipcodes. Thus we have the
relation:

AddrInfo(address,city,zip)

Here too, we may obtain some or all of the information from exter-
nal sources in response to queries. We might use human workers
for this task, or we might invoke information extraction tools, per-
haps with results verified by humans. In addition, we may need
to coordinate values between our two relations, since queries are
likely to join them on their address fields.

We will see how these logical relations form the conceptual schema
that is declared by the administrator setting up a Deco database, and
they are the relations queried by end users and applications. Under-
neath, Deco uses a different raw schema. The heart of Deco query
processing is the significant machinery and algorithms for combin-
ing stored data with crowdsourced (or other externally-obtained)
data to answer declarative queries over the conceptual schema.

2. DATA MODEL
There are several components to Deco’s data model:
• The conceptual schema. In our running example introduced

in Section 1.1, relations Restaurant and AddrInfo are part of
the conceptual schema. These are the relations specified by
the schema designer, and they are queried by end users and
applications. The conceptual schema also includes:

• Partitioning of the attributes in each conceptual relation
into anchor attributes and dependent attribute-groups.
Roughly speaking, anchor attributes typically identify
“entities” while dependent attribute-groups specify prop-
erties of the entities, although schema designers could
use attributes differently.
• Fetch rules, specifying how data in the conceptual rela-

tions can be obtained from external sources (including
humans).
• Resolution rules, used to reconcile inconsistent or un-

certain values obtained from external sources.

• The raw schema. Deco is designed to use a conventional
relational DBMS as its back-end. The raw schema is the
one stored in the DBMS. It is derived automatically from
the conceptual schema, and is invisible to both the schema
designer and end users.
• The data model semantics. We specify the semantics of a

Deco schema in terms of conventional relations. Loosely,
the “valid instances” of a Deco database are those conven-
tional databases that can be constructed by executing fetch
rules to expand the contents of the raw tables, then apply-
ing resolution rules and joining the raw tables to produce the
conceptual relations.

In the remainder of this section we begin by illustrating each of
the data model components informally, then we step through each
component formally.

We use the term designer to refer to both the schema designer as
well as the database administrator. We use the term user to refer to
the end user or the application developer.

2.1 Example of Data Model Components
Consider the restaurant relation introduced in Section 1.1: Rest-

aurant (name, address, rating, cuisine). The designer designates
name and address as anchor attributes, and rating and cuisine as
dependent attributes. Informally, we can see that the pair of name
and address attributes together identify the “entities” in our relation
while the other two attributes are properties of entities; we will see
shortly the specific roles of anchor versus dependent attributes.
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Figure 1: Components of the Deco Data Model

The raw schema corresponding to this specification of Restau-
rant is shown in the lower half of Figure 1. These relations are the
ones actually stored as tables in the back-end RDBMS. There is one
anchor table (RestA) containing the anchor attributes, and one de-
pendent table for each dependent attribute (RestD1 and RestD2);
dependent tables also contain some anchor attributes. (In general,
both anchor and dependent attributes can be a group of attributes.)
Recall that we associate cuisines with the restaurant name, and rat-
ing with a name-address pair, since different branches of a restau-
rant (such as NY and SF in Figure 1—to save space, we use abbre-
viated addresses) can have different ratings, but all branches serve
the same kind of food. We will see in Section 2.5 how the raw
schema are generated.

The top of the figure shows the original conceptual relation, which
is the outerjoin of the raw tables with certain attribute values “re-
solved” (explained shortly).

Now let us consider how our database might be populated. Per-
haps we already have some restaurant name-address pairs, with or
without ratings and/or cuisines. If so, Deco might ask human work-
ers to specify ratings and/or cuisines given a restaurant name and/or
address. Alternatively, Deco might ask human workers to specify
restaurant names and addresses given a cuisine and/or rating, or
to provide restaurant names without regard to ratings or cuisines.
Referring to Figure 1, the designer can specify fetch rules that:
• Ask for one or more restaurant name-address pairs, inserting

the obtained values into raw table RestA.
• Ask for a rating given a restaurant name and an address (e.g.,

(Limon,SF) in the figure), inserting the resulting pair into
table RestD1; similarly ask for a cuisine given a restaurant
name (e.g., Limon in the figure), inserting the resulting pair
into RestD2.
• Ask for a restaurant name given a cuisine, inserting the re-

sulting restaurant into table RestA, and inserting the restaurant-
cuisine pair into RestD2 (e.g., French in the figure).

These fetch rules are depicted at the bottom of the raw tables in
Figure 1. There are many more fetch rules that may be used to
populate this database, we return to this point later on.

Now suppose we’ve obtained values for our raw tables, but we

have inconsistencies or uncertainty in the collected data. One de-
cision we made in Deco is to provide a conceptual schema that
does not have uncertainty as a first-class component, however meta-
data in both the raw and conceptual schemas (described later in
Section 2.7) can be used to encode information about confidence,
worker quality, or other aspects of collected data that may be use-
ful to applications. To obtain conceptual relations that are “clean”
from raw tables that may contain inconsistencies, we use resolu-
tion rules, specified by the designer. In Figure 1 we illustrate two
resolution rules:
• A resolution rule for attribute rating specifying that the con-

ceptual schema contains one rating for each restaurant name-
address pair, namely the average of the ratings stored in the
raw schema.
• A resolution rule for attribute cuisine specifying that the con-

ceptual schema contains all of the cuisines for each restaurant
name from the raw schema, but with duplicates eliminated.

The semantics of a Deco database is defined based on a Fetch-
Resolve-Join sequence. Every Deco database has a (typically in-
finite) set of valid instances. A valid instance is obtained by log-
ically: (1) Fetching additional data for the raw tables using fetch
rules; this step may be skipped. (2) Resolving inconsistencies using
resolution rules for each of the raw tables. (3) Outerjoining the re-
solved raw tables to produce the conceptual relations. Note that the
“intermediate” relations between steps (2) and (3) are not depicted
in Figure 1; in the figure we resolve and join in one step. Also it
is critical to understand that the Fetch-Resolve-Join sequence is a
logical concept only. When Deco queries are executed, not only
may these steps be interleaved, but typically no conceptual data is
materialized except the query result.

Note that valid instances could contain wildly varying amounts
of data, from no tuples at all to several million tuples, and they are
all valid. So, when a user poses a query to the database, the valid
instance used to answer his query may be the one with no tuples at
all. We therefore need a mechanism to allow the user to request that
at least a certain number of tuples are returned, discussed further in
Section 3.



2.2 Conceptual Relations, Anchor and Depen-
dent Attributes

Now let us begin formalizing the concepts illustrated in Sec-
tion 2.1. The designer declares two conceptual relations, and des-
ignates their anchor and dependent attributes. In our example:

Restaurant(name,address,[rating],[cuisine])
AddrInfo(address,[city,zip])

Each attribute is either an anchor attribute or a member of ex-
actly one dependent attribute-group. Thus, to partition a relation’s
attributes, it suffices to enclose dependent attribute-groups within
square brackets. In our example, the pair of anchor attributes name
and address identify individual restaurants, while rating and cui-
sine are dependent attributes that are independent of each other.
(We assume ratings are not associated with specific cuisines of a
restaurant.) In relation AddrInfo, address is the anchor attribute; at-
tributes city and zip are not independent of each other with respect
to an address, so they form a single dependent attribute-group. The
next subsection clarifies the purpose of these designations within
the Deco data model.

2.3 Resolution Rules
For each conceptual relation, the schema designer must spec-

ify one resolution rule for each dependent attribute-group, and one
resolution rule for the anchor attributes treated as a group. Thus, a
resolution rule takes one of the following two forms, where A, A′,
and D are sets of attributes and f is a function.

1. A′ → D : f
where A′ is a subset of the anchor attributes (A′ ⊆ A) and
D is a dependent attribute-group

2. ∅ → A : f
where A is the set of anchor attributes

In the first form, resolution function f takes as input a tuple of val-
ues for the anchor (A′) attributes, and a set of tuples with values
for the dependent (D) attributes. It produces as output a new (pos-
sibly empty, possibly unchanged) set of dependent tuples. The idea
is that function f “cleans” the set of dependent values associated
with specific anchor values, when the dependent values may be in-
consistent or uncertain. In the second form, function f “cleans” a
set of anchor (A) values. In either case, if no cleaning is necessary
then f can simply be the identity function.

Let us look at a set of resolution rules for our running example.
(Rules RR1 and RR2 are displayed in Figure 1.)

[RR1, relation Restaurant] name,address → rating : avg()
[RR2, relation Restaurant] name → cuisine : dupElim()
[RR3, relation Restaurant] ∅→ name,address : canonicalize()
[RR4, relation AddrInfo] address → city,zip : majority()
[RR5, relation AddrInfo] ∅ → address : identity()

(Note the function specifications here are abstracted; in practice the
Deco system requires resolution functions to adhere to a specific
API.) The interpretation of these rules is:
• RR1: The rating for a specific restaurant (name-address

pair) in the conceptual database is the average of the ratings
in the raw data.
• RR2: The cuisines for a restaurant are associated with the

restaurant name but not its address (under the assumption all
outlets in a chain serve the same cuisine). The conceptual
database contains each cuisine for each restaurant in the raw
data, with duplicates removed.

• RR3: The name-address pairs in the conceptual database
are a “canonicalized” version of the raw name-address pairs.
Canonicalization can put the values in a particular form, and
can perform “entity resolution” to merge differing name- ad-
dress pairs that are judged to refer to the same restaurant.
• RR4: If the raw data contains more than one city-zip pair for

a given address, the pair occurring most frequently is the one
present in the conceptual database. We can assume ties are
broken arbitrarily.
• RR5: Assuming address values in the AddrInfo relation are

never uncertain or inconsistent, the simple identity resolution
function is used in this case.

As an example, the three tuples corresponding to (Subway,SF,*)
in raw table RestD1 in Figure 1 are resolved using resolution func-
tion RR1 into a single tuple (Subway,SF,3.9), which then partici-
pates in the join with RestA and RestD2.

Readers inclined towards dependency theory may already have
noticed that that resolution rules suggest multivalued dependen-
cies on the conceptual relations. In relation Restaurant we have
the multivalued dependencies name,address→→rating and name→
→cuisine. Furthermore, when a resolution rule for a dependent
attribute-group is guaranteed to produce exactly one value, we have
a functional dependency. For instance, name and address function-
ally determine rating, since the resolution rule for rating produces
exactly one value.

2.4 Fetch Rules
The schema designer may specify any number of fetch rules. Un-

like resolution rules, fetch rules may be added or removed at any
time during the lifetime of a database—they are more akin to “ac-
cess methods” than to part of the permanent schema. A fetch rule
takes the following form:

A1 ⇒ A2 : P

where A1 and A2 are sets of attributes from one relation (with
A1 = ∅ or A2 = ∅ permitted, but not both), and P is a fetch
procedure that implements access to human workers or other exter-
nal sources. (P might generate HITs (Human Intelligence Tasks)
to Amazon’s Mechanical Turk [3], for example, but nothing in our
model or system is tied to AMT specifically.) The only restriction
on fetch rules is that if A1 or A2 includes a dependent attribute D,
then A1 ∪A2 must include all anchor attributes from the left-hand
side of the resolution rule containing D. In other words, if AD is
the left hand side of a resolution rule containing dependent attribute
D, then, if D ⊆ A1 ∪ A2, then AD ⊆ A1 ∪ A2. We will see the
reason for this restriction in Section 2.6.

Let us look at a set of possible fetch rules for our running ex-
ample. We use R and A to abbreviate Restaurant and AddrInfo
respectively. (Rules FR1, FR2, FR4, and FR5 are displayed in Fig-
ure 1.)

[FR1] R.name, R.address ⇒ R.rating : P1

[FR2] R.name ⇒ R.cuisine : P2

[FR3] A.address ⇒ A.city, A.zip : P3

[FR4] R.cuisine ⇒ R.name : P4

[FR5] ∅ ⇒ R.name, R.address : P5

[FR6] R.name ⇒ R.address : P6

[FR7] ∅ ⇒ R.name, R.cuisine : P7

[FR8] R.name, R.address ⇒ ∅ : P8

[FR9] R.address ⇒ R.name, R.rating, R.cuisine : P9

The interpretation of these rules is:
• FR1–FR3: It is very common—though not required—to have

a set of fetch rules that parallel the resolution rules. For ex-
ample, fetch rule FR1 says that procedure P1 takes a specific



restaurant (name-address pair) as input, and it accesses hu-
mans or other external sources to obtain zero or more rating
values for that restaurant.
• FR4: Another common form is the reverse of a resolution

rule: gather anchor values for given dependent values. For
example, FR4 says that procedure P4 takes a cuisine as input,
and accesses humans or other external sources to obtain one
or more restaurant name values for that cuisine.
• FR5–FR6: Fetch rules can be used to gather values for an-

chor attributes, either from scratch or from other anchor at-
tributes. FR5 says restaurant name-address pairs can be ob-
tained without any input, while FR6 says that address values
can be obtained given name values.
• FR7: Fetch rules can gather anchor and dependent values

simultaneously. Instead of asking for a cuisine given a name
(as in FR2) or a name given a cuisine (as in FR4), procedure
P7 takes no input and asks for name-cuisine pairs.
• FR8: Fetch rule FR8 is the reverse of FR7 and has a quite

different function. A fetch rule with ∅ on the right-hand side
performs verification: Procedure P8 takes a name-address
pair and accesses humans or other external sources to re-
turn a yes/no verification of the input values. A similar rule
might be used to verify address-city-zip triples for relation
AddrInfo, for example.
• FR9: Fetch rule FR9 demonstrates a fetch rule that can’t be

pigeon-holed into a particular structure. It says that proce-
dure P9 will take an address as input, and will obtain zero
or more name-rating-cuisine triples for that address. Note
that this rule would not be allowable if name were omitted:
The presence of dependent attributes rating and cuisine re-
quires that the anchor attributes from their resolution rules
(name,address and name respectively) are also present.

Invocations of the Fetch Rule FR1 (with (Limon,SF)), FR2 (with
Limon), FR4 (with French), FR5 (with no input) are depicted in
Figure 1. Note that these fetch rules affect at most one dependent
raw table; other fetch rules, such as FR9, affect multiple dependent
raw tables.

There are many, many more possible fetch rules for our running
example. Which fetch rules are used in practice may depend on the
capabilities (and perhaps costs) of the human workers and other ex-
ternal data sources, and perhaps the programming burden of imple-
menting a large number of fetch procedures. Also remember that
fetch rules are not set in stone—they can be added, removed, and
modified as capabilities change or tuning considerations dictate.

2.5 Raw Schema
The raw schema—for the tables actually stored in the underlying

RDBMS—depends only on the definitions of the conceptual rela-
tions, anchor and dependent attributes, and resolution rules. Specif-
ically, for each relationR in the conceptual schema, the raw schema
contains:
• One anchor table whose attributes are the anchor attributes

of R
• One dependent table for each dependent attribute-group D

in R, containing the attributes in the resolution rule for D
From the conceptual schema in Section 2.2, and the resolution rules
in Section 2.3, it is straightforward to derive the following raw
schema:

RestA(name,address)
RestD1(name,address,rating)
RestD2(name,cuisine)

AddrA(address)
AddrD1(address,city,zip)

For readers inclined towards dependency theory: Continuing from
the discussion at the end of Section 2.3, we can see that the raw
schema is in fact a Fourth Normal Form (4NF) decomposition of
the conceptual schema based on the multivalued dependencies im-
plied by the resolution rules.

Applications or end users may wish to insert, modify, and/or
delete data in the conceptual relations, in a standard database fash-
ion. The mapping from conceptual relations to raw tables is simple
enough that all such modifications can be translated directly to cor-
responding modifications on the raw tables. More interestingly, if
an application has chosen to use Deco, then we expect some of the
data stored in the raw tables to be obtained from human workers or
other external sources over time as part of query processing. How
that process works, while properly reflecting our data model and
query language semantics, is the topic of much of the remainder of
this paper. Next we define the data model semantics, which centers
around the mapping from raw tables to conceptual relations.

2.6 Data Model Semantics
The semantics of a Deco database at a given point in time is de-

fined as a set of valid instances for the conceptual relations. The
valid instances are determined by the current contents of the raw
tables, the potential of the fetch rules, and the invocation of resolu-
tion rules before outerjoining the raw data to produce the concep-
tual relations. Let us consider this Fetch-Resolve-Join sequence in
detail. Note that these three steps may not actually be performed,
but query answers must reflect a valid instance that could have been
derived by these three steps, as we will discuss in Section 3.

1. Fetch
The current contents of the raw tables may be extended by in-
voking any number of fetch rules any number of times, inserting
the obtained values into the raw database. Consider a fetch rule
A1 ⇒ A2 : P with A2 6= ∅. By definition, procedure P takes
as input a tuple of values for the attributes in A1, and produces as
output zero or more tuples of values for the attributes in A2. We
can equivalently think of an invocation of the fetch rule as return-
ing a set T of tuples for A1 ∪ A2. Note the input values for A1

may come from the database or from a query (see Section 4), but
for defining semantics we can assume any input values.

The returned tuple set T with schema A1 ∪ A2 may include
any number of attributes from any number of raw tables. Consider
any of the raw tables T (A), and let B = A ∩ (A1 ∪ A2) be the
attributes of T present in T . If B is nonempty, we insert ΠB(T )
into table T , assigning NULL values to the attributes of T that are
not present in T (i.e., the attributes in B − A). Informally, we can
think of the process as vertically partitioning T and inserting the
partitions into the corresponding raw tables, with anchor attributes
typically replicated across multiple raw tables. The one guarantee
we have, based on our one fetch rule restriction (Section 2.4), is that
no NULL values are inserted into anchor attributes of dependent
tables. This property simplifies the resolution process, discussed
shortly. As an example, fetch rule FR9 above would insert a tuple
in all three restaurant raw tables. Note that inserting tuples in this
manner may end up proliferating duplicate tuples, especially in the
anchor raw table. As an example, if we have a name-address pair
in RestA, then every time we use the name-address pair in the fetch
rule name,address ⇒ rating, we end up adding an extra copy of
the same name-address pair to RestA. If duplicates may pose a
problem, then the origin of the tuples (i.e., the fetch rule invocation
that added them) can be recorded in the metadata (Section 2.7) and
used by the resolution function.



Lastly, consider a fetch rule A1 ⇒ ∅ : P . In this special case
where a fetch rule is being used for verification (recall Section 2.4),
we proceed with the insertions as described above, but only whenP
returns a yes value. If the no values are important for resolution, a
more general scheme for verification may be used, and is described
in Section 2.7 below.

2. Resolve
After gathering additional data via fetch rules, each anchor and
dependent table in the raw schema is logically replaced by a “re-
solved” table. Consider a dependent table T (A′, D) with corre-
sponding resolution rule A′ → D : f . We logically: (a) group
the tuples in T based A′ values; (b) call function f for each group;
(c) replace each group with the output of f for that group. (Recall
from Section 2.3 that f takes as input a tuple of values for the A′

attributes and a set of tuples with values for theD attributes. It pro-
duces as output a new, possibly empty or unchanged, set of tuples
for D.) Resolving an anchor table T (A) simply involves invoking
the function f in the resolution rule ∅ → A : f with all tuples in
T .

Note that NULL values may appear in anchor tables, and for
dependent attributes in dependent tables. We assume if NULL val-
ues are possible, then the corresponding resolution functions are
equipped to deal with them. We need not worry about NULLs
when grouping anchor attribute values (step (a) above), since our
fetch-rule restriction (Section 2.4) ensures that all anchor values in
dependent tables are non-NULL.

In Figure 1, resolution on the three RestD1 tuples correspond-
ing to Subway, SF returns an average rating of 3.9. Since cuisine
has a duplicate-elimination resolution function, resolution on the
three tuples corresponding to Bouchon in RestD2 returns two tu-
ples (one for French, one for Continental).

3. Join
The final step is simple: For each conceptual relation R, a left out-
erjoin of the resolved anchor and dependent tables for R is per-
formed to obtain the final tuples in R. Note that an outerjoin (as
opposed to a regular join) is necessary to retain all resolved values,
since values for some attributes may not be present. In Figure 1,
resolved tuples (Subway,SF) from RestA, (Subway,SF,3.9) from
RestD1 and (Subway,Burgers) from RestD2 join to give the tuple:
(Subway,SF,3.9,Burgers).

The left outerjoin must have the anchor table as its first operand,
but otherwise the resolved dependent tables may be left outerjoined
in any order; Appendix A proves that all such orders are equivalent.

To recap, a valid instance of a Deco database is obtained by
starting with the current contents of the raw tables and logically
performing the three steps above, resulting in a set of data for the
conceptual relations. Since in step 1 any number of fetch rules may
be invoked any number of times (including none), we typically have
an infinite number of valid instances. This unboundedness is not a
problem; as we will see shortly, our goal is to deliver the result of a
query over some valid instance, not over all valid instances.

We emphasize again that these three steps are logical—they are
used only to define the semantics of the data model. Of course
some amount of fetching, resolving, and joining does need to oc-
cur in order to answer queries, but not necessarily as “completely”
as defined above, and not necessarily in Fetch-Resolve-Join order.
Section 4 describes our query processing strategies that respect the
semantics while meeting cost, performance, and quality objectives.

2.7 Metadata
The Deco data model as described so far has precise formal un-

derpinnings and relies heavily on the relational model with all of

its benefits. However in reality there are several messy aspects
of using crowdsourced (or other external) data that also must be
accommodated—pieces of the crowdsourcing puzzle that we have
chosen not to make first-class in our data model, yet are crucial for
some applications. Examples include:
• Data expiration: If we store fetched data in the raw tables

for future queries, we may wish to purge it automatically at
some later point in time.
• Worker quality: When data is obtained from humans, we

may have some knowledge of the expected quality, e.g., based
on the crowdsourcing service, or on worker history.
• Voting: In Section 2.4 we described how fetch rules can be

used to ask humans or other sources to verify uncertain val-
ues. If the response of such a fetch rule is a yes/no answer,
we could record the tally of yes/no votes. This tally can then
be used for resolution.
• Confidence scores: While worker quality and voting are mech-

anisms associated with confidence in data values, ultimately
we may wish to associate explicit confidence scores with our
data.
• Fetch Rule: Since some fetch rules may be more accurate or

informative than others, we may wish to record which fetch
rule generated which data.

All of these examples can be handled by allowing additional
metadata columns in the raw tables. Metadata columns can be used
for timeout values, to store information about worker quality, to
tally votes, and for confidence values. Metadata attributes can be
included in the input and/or output of fetch procedures and resolu-
tion functions. In our examples, data expiration and worker quality
values might be returned by a fetch function; a resolution function
might take worker quality and fetch rules as part of its input and re-
turn confidence scores as part of its output. Metadata columns can
be exposed in the conceptual relations too, if their contents may be
of direct use to applications.

3. QUERY LANGUAGE
The Deco query language and semantics is straightforward:

A Deco query Q is a relational query over the concep-
tual relations. The answer to Q is the result of eval-
uating Q over some valid instance of the database as
defined in Section 2.6.

We assume either relational algebra or SQL for posing queries.
Since the Deco system supports SQL, we use SQL for examples
in this paper.

Referring back to Section 2.6, recall that one valid instance of the
database can be obtained by resolving and joining the current con-
tents of the raw tables, without invoking any fetch rules. Thus, it
appears a query Q can be always answered correctly without con-
sulting human workers or other outside sources. The problem is
that often times this “correct” query result will also be empty. For
example, if our query is:

Select name,address From Restaurant
Where cuisine=‘Thai’ and rating > 4

and there are currently no highly-rated Thai restaurants in our database,
then the query result is empty.

To retain our straightforward semantics over valid instances while
avoiding the empty-answer syndrome, we simply add to our query
language an “AtLeast n” clause. This clause says that not only
must the user receive the answer to Q over some valid instance of
the database, but it must be a valid instance for which the answer



has at least n tuples with non-NULL attributes. Adding “AtLeast
5” to the query above, for example, forces the query processor to
collect additional data using fetch rules until it obtains the name
and address values for at least five highly-rated Thai restaurants.

Our basic problem formulation for query processing, discussed
in detail in the next section, thus requires a minimum number of tu-
ples in query results, while attempting to optimize other dimensions
such as number of fetches, monetary cost, response time, and/or re-
sult quality. These considerations suggest other possibilities at the
language level, for example:
• Specify MaxTime instead of AtLeast, in which case the query

processor must deliver the result within a certain amount of
time, and attempts to return as many tuples as possible.
• Specify MaxBudget or MaxFetches instead of MaxTime or

AtLeast, in which case the query processor is constrained
in how much external data it can obtain (based on monetary
cost or number of fetch procedures allowed), and attempts to
return as many tuples as possible.

There are many interesting variants, but it is important to note that
all of them rely on the same query language semantics: return the
relational answer to Q over some valid instance of the conceptual
relations while satisfying any performance-related constraints.

4. QUERY PROCESSING
Having defined the Deco data model and query language, we

now consider how to build a query processor that implements the
defined semantics. The query processor must support constraints
such as AtLeast while dealing with the inherent challenges in crowd-
sourcing, such as latency, cost, and uncertainty.

We first describe Deco’s execution model, then we present a
space of alternate plans that demonstrate Deco’s flexibility. Plan
costing and selection is a topic of ongoing work.

4.1 Execution Model
The Deco data model and query semantics gives us some unique

challenges to address at the execution-model level.
• First, the result tuples may change based on the added data

in the raw tables. For example, an additional rating value for
a given restaurant may change the output of the resolution
function. A traditional iterator model does not allow us to
modify values in tuples once they are passed up the plan.
• Second, Deco fetch rules are general enough to provide tu-

ples spanning multiple raw tables. For example, a fetch rule
invocation name,address ⇒ rating,cuisine provides a rat-
ing and a cuisine at the same time. Thus, data can be in-
serted in the raw table for cuisine even if the intent was to
obtain more ratings. The iterator model has no mechanism
for operators to signal arrival of new data to parent operators.
• Finally, since crowdsourcing services have high latency and

provide natural parallelism, our execution model needs to in-
voke multiple fetch rules in parallel. While asynchronous
iteration [15] can solve this problem, it does not solve the
other problems above.

To address these challenges, Deco uses a novel Push-Pull Hybrid
Execution Model, drawing on a combination of ideas from incre-
mental view maintenance [7] and asynchronous iteration (devel-
oped in WSQ-DSQ [15]). It has the following features:
• Incremental Push: We borrow ideas from incremental view

maintenance to make sure that the output reflects the current
state of the raw tables. The result of a fetch rule is handled as
an update to one or more base tables (raw tables in our case),

and then propagated to the view (the conceptual table in our
case).
• Asynchronous Pull: We borrow ideas from asynchronous

iteration to cause messages to flow down the plan to initiate
multiple new fetches in parallel and feed more tuples back
to the plan as soon as any fetches complete. The messages
that flow down the plan are similar to getNext requests in an
iterator model, except that the parent operator does not wait
for a response (due to the inherent latency in crowdsourcing,
it would take a very long time to get a response). Without
these messages, the query processor would only be able to
passively apply given changes to the raw tables rather than
actively drive them.
• Two Phase: The query processor needs to make sure that

fetches are issued only if sufficient data is not present in the
raw tables to answer the query. Deco achieves this constraint
by using a two phase execution model, where the first phase,
termed materialization, tries to answer the query using the
current content of raw tables, and the second phase, termed
accretion, issues fetch rules to obtain more result tuples.

Significant additional details of the Push-Pull Hybrid Execution
Model are given in [30].

4.2 Alternate Plans
To show the flexibility of our execution model, we present four

different query plans for the following query on the Restaurant
relation from Section 1.1:

Q: Select name,address,rating,cuisine
From Restaurant Where rating > 4 AtLeast 5

As resolution functions, we use duplicate elimination for name-
address, average of 3 (or more) tuples for rating, and majority of 3
(or more) for cuisine. We will see in Section 6 how these different
query plans perform in terms of execution time and monetary cost.

Basic Plan: Figure 2(a) shows a basic query plan that uses the
fetch rules ∅ ⇒ name,addr (operator 7), name,addr ⇒ rating
(operator 10), and name ⇒ cuisine (operator 13). At a high level,
the plan performs an outerjoin (operator 4) of a resolved version of
RestA (operator 5) and a resolved version of RestD1 (operator 8),
followed by a filter on rating (operator 3). Then the result is out-
erjoined (operator 2) with a resolved version of RestD2 (operator
11). The root operator (operator 1) stops the execution once five
output tuples are generated.

Predicate Placement: Alternatively, we can place the Filter oper-
ator above both of the DLOJoin or Dependent Left Outerjoin oper-
ators 16 and 17 (Figure 2(b)).

Due to the nature of our execution model, this simple transfor-
mation has more significant implication. The plan in Figure 2(a)
will fetch cuisine only for the restaurants that satisfy rating>4, so
it may have lower monetary cost. On the other hand, the plan in
Figure 2(b) increases the degree of parallelism by fetching rating
and cuisine at the same time, while having a higher monetary cost.

Reverse Fetches: Another interesting alternative plan can use re-
verse fetch rules. For our query Q, suppose the predicate rating >
4 is very selective. If we use the query plans in Figure 2, even ob-
taining a single answer could be expensive in terms of latency and
monetary cost, because we are likely to end up fetching a number
of restaurants that do not satisfy the predicate.

Instead, we can use the reverse fetch rule rating⇒ name,address
underneath the Resolve operator to start with a restaurant with a cer-
tain rating (according to at least one worker) instead of a random
restaurant. Figure 3(a) shows a query plan that uses this reverse
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Figure 3: (a) Reverse Fetch (b) Combined Fetch

fetch rule. Notice that the Fetch operator 7 “pushes” tuples to both
RestA and RestD1 via the Scan operators 6 and 9 (dotted arrows).

Combined Fetches: It may be less expensive to use a fetch rule
that gathers multiple dependent attributes at the same time, rather
than fetching one attribute at a time. For the example query Q, we
can use a combined fetch rule name,address ⇒ rating,cuisine in-
stead of two fetch rules name,address⇒ rating and name,address
⇒ cuisine. Figure 3(b) shows a query plan that uses this combined
fetch rule. Notice that both Resolve operators 21 and 24 “pull”
more tuples from the Fetch operator 23.

5. SYSTEM
We implemented our Deco prototype in Python with a SQLite

back-end. Currently, the system supports some DDL commands
that create tables, resolution functions, and fetch rules as well as a
DML command that executes queries. In this section, we describe
Deco’s overall architecture (Figure 4).

Client applications interact with the Deco system using the Deco
API, which implements the standard Python Database API v2.0:
connecting to a database, executing a query, and fetching results.
The Deco API also provides an interface for registering and con-
figuring fetch procedures and resolution functions. Using the Deco
API, we built a command line interface, as well as a web-based
graphical user interface that executes queries, visualizes query plans,
and shows log messages in real-time.

When the Deco API receives a query, the overall process of pars-

ing the query, choosing the best query plan, and executing the cho-
sen plan is similar to a traditional DBMS. However, the query plan-
ner translates declarative queries posed over the conceptual schema
to execution plans over the raw schema, and the query executor is
not aware of the conceptual schema at all. To obtain data from
humans, the query executor invokes fetch procedures, and the raw
data is cleaned by invoking resolution functions.

6. EXPERIMENTAL EVALUATION
To illustrate the types of performance results that can be obtained

from Deco, we present two experiments. One studies how different
fetch rule configurations affect query performance, while the sec-
ond experiment evaluates different query plans given a particular
fetch rule configuration. Given our space limitations, it is impossi-
ble to present here more comprehensive results.

Experimental Setup: We used the following conceptual relation:
Country(name,[language],[capital])

The anchor attribute name identifies a country, while the two de-
pendent attributes language and capital are independent properties
of the country. For resolution functions, we used dupElim (du-
plicate elimination) for name, and majority-of-3 for language and
capital. (We assume one language per country.) The resolution
function majority-of-3 finds the majority of three or more tuples.

In addition, we created six fetch rules that use the Mechanical
Turk fetch procedure to fetch data. Our experiments use one of the
following fetch rule configurations:
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• Basic configuration (3 fetch rules): ∅⇒ name,
name ⇒ language, and name ⇒ capital
• Reverse configuration (3 fetch rules): language ⇒ name,

name ⇒ language, and name ⇒ capital
• Hybrid configuration (2 fetch rules):

language ⇒ name,capital and name ⇒ language,capital
For attributes name and capital, workers were allowed to enter free
text, but our question server validated this input to ensure that the
text had no leading or trailing whitespaces and that all letters were
uppercase. For language, workers were allowed to select one lan-
guage from a drop-down list of about 90 languages.

On Mechanical Turk, we paid a fixed amount of five cents per
HIT (i.e., per fetch rule invocation) as compensation for completed
work. All experiments were conducted on weekends in Feb 2012.

Our benchmark query requested eight Spanish-speaking coun-
tries along with their capital cities.

Select name,capital From Country
Where language=’Spanish’ AtLeast 8

For each experiment, we begin with empty raw tables. According
to Wikipedia, there are 20 Spanish-speaking countries in total.

Experiment 1: Performance for Different Fetch Configurations:
In our first experiment, we evaluated the query performance of
different fetch rule configurations to study the usefulness of the
flexibility of Deco fetch rules. Our fetch configurations are by
default translated into query plans similar to Figure 2(a) (Basic),
Figure 3(a) (Reverse), Figure 3(b) (Hybrid), where the raw table
containing names is left outerjoined with the raw table containing
names and languages, followed by a filter on language, and then the
result is left outerjoined with the raw table containing names and
capitals. However, the fetch operators in each of these plans use
different fetch rules. For instance, for the Hybrid configuration, the
fetch operator for the name raw table uses language⇒ name,capital,
while the (shared) fetch operator for language and capital raw ta-
bles uses name ⇒ language,capital as the fetch rule.

We ran the same benchmark query with the three sets of fetch
rules (therefore different query plans) on our Deco prototype [29].

For each set, we ran the query twice and noted similar results. Both
runs are included in our graphs.

Figure 5(a) depicts the number of non-NULL result tuples ob-
tained over time. Since our query specified AtLeast 8, reaching
eight output tuples signifies the completion of query. In addition,
Figure 5(b) shows the number of HITs submitted by workers over
time. Note that the monetary cost of a query is proportional to the
total number of HITs submitted.

Using the hybrid configuration, the query took 10.5 minutes and
cost $1.35 for 27 worker answers on average (across two runs). Us-
ing the reverse configuration, the query took 15 minutes and cost
$2.30 for 46 worker answers on average. In comparison, the ba-
sic configuration performed very poorly: the query took two hours
overall and cost around $12.05. (We ended up collecting 64 coun-
tries and their languages.)

Thus, we find that it is important to consider a variety of query
plans, and the decisions of the query optimizer can significantly
impact query performance in terms of latency and total monetary
cost. Choosing fetch rules is a significant decision under the con-
trol of the optimizer. In particular, for this benchmark query, those
fetch rules that get multiple pieces of information at once (such as
name⇒language,capital), and those that operate in the reverse di-
rection (such as language⇒name) offer significant benefits over
basic fetch rules. In general, it is important for a declarative crowd-
sourcing system (like Deco) to handle fetch rules of different types,
and thus increase the opportunities for finding a good execution
plan. (Of course, we depend on the schema designer to take advan-
tage of the flexibility and provide multiple fetch rules.)

Overall, our findings validate the role of fetch rules as “access
methods” for the crowd, and reinforce the importance of including
them in a principled query optimization framework.

We repeated our experiment with the constraint AtLeast 12 in-
stead of AtLeast 8 (graphs not shown). While the relative per-
formance of our configurations was similar, it was interesting to
observe that AtLeast 12 queries did not take significantly longer
than AtLeast 8 despite producing more answers, but they did in-
cur higher cost. This behavior is because our execution model is-
sues more fetches (i.e., HITs) in parallel (via bind messages) for
AtLeast 12 than for AtLeast 8, and a larger number of HITs in
the same HIT group attract more workers. We plan to investigate
trading off cost for time by varying the number of bind messages
in future work.

In terms of the quality, the results were clean and correct except
one typo (“Ddominican Republic”). Not suprisingly, individual an-
swers had several errors that are not exposed in the result. Common
errors for capital cities were for Spain and Bolivia.

Experiment 2: Performance for Different Query Plans: In this
experiment, we evaluated the query performance of different query
plans under the reverse fetch rule configuration. Specifically, we
studied the performance implication of pulling up the (language
= ’Spanish’) predicate. Our Deco prototype pushes all predicates
down as much as possible by default and produces a query plan
similar to Figure 3(a) in the reverse configuration. Under this plan
(termed “down”), Deco does not invoke the fetch rule name⇒ cap-
ital until language is resolved to Spanish. On the other hand, under
the plan (termed “up”) that is produced by applying the predicate
pull-up transformation (similar to Figure 2(b)), Deco invokes fetch
rules name ⇒ language and name ⇒ capital simultaneously as
soon as a new country name is fetched.

We ran the same benchmark query with these two query plans.
Figure 5(c) depicts the number of non-NULL result tuples obtained
over time for two runs each. The completion times for the “up”
and “down” plans were 9 minutes and 15 minutes, respectively.
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(c) Completion rate for different query plans

Figure 5: Experimental Results

In both cases, the cost of query was about $2.20. In general, the
predicate pull-up transformation makes Deco query plans invoke
fetch rules more “speculatively,” which results in more parallelism.
More parallelism brings down latency, as we see in Figure 5(c). On
the downside of pull-up, speculative fetch rule invocations can lead
to higher overall cost. In this particular scenario, we did not observe
a significant cost increase because the worker answers for the fetch
rule language ⇒ name were quite accurate, and the speculative
invocations of name ⇒ capital were not wasted.

The results reveal that, much like conventional query optimiza-
tion, the placement of operators is crucial for plan performance, and
in addition there are interesting interactions between fetch rules and
other operators. Of course, the ability to explore alternative plans
hinges on a principled framework for query optimization.

7. RELATED WORK
The prior work related to Deco fits into one of the following

categories. We describe each category in turn.

Crowdsourcing and Databases: There has been recent interest in
the database community in using crowdsourcing as part of database
query processing [10, 14, 24, 27]. The work on CrowdDB [14] is
perhaps the most similar to the one presented in this paper. Over-
all, Deco opts for more flexibility and generality, while CrowdDB
made some fixed choices at the outset to enable a simpler design.
A detailed comparison between the two systems can be found in
Appendix B. We describe the key differences between Deco and
CrowdDB here:
• Interfaces: While CrowdDB provides a limited set of meth-

ods to get data from the crowd, Deco gives the schema de-
signer the flexibility to use very expressive and general fetch
rules. As we saw in Figure 5(a)–(b), the reverse and com-
bined fetch rules offer significant performance improvements
over basic fetch rules.
• Cleansing: Deco stores raw data rather than cleansed data,

in order to enable general resolution functions that vary their
output based on newly added data. CrowdDB opts for a sim-
pler design wherein a fixed number of humans are consulted
for each unknown value, and then the cleansed data is stored.
• Design: Deco makes fewer assumptions about the schema:

for instance, CrowdDB enforces the presence of primary keys
while Deco does not. (As an example, in our restaurant
schema, there is no primary key since we allow restaurants
to serve multiple cuisines.)
• Principled: As far as we know, Deco is the first system to

have a precisely defined semantics based on valid instances.
Qurk [24] is a workflow system that implements declarative crowd-

sourcing, unlike Deco which is a database. (Like Deco, however,

Qurk may retain outcomes of prior tasks for reuse or fitting clas-
sifiers with the aim of reducing cost, using an underlying storage
engine.) Since Qurk uses crowdsourcing primarily as part of its op-
erators (filtering, joins), it is not as general in the kind of data it can
obtain from the crowd.

Our prior work [27] outlines a wide variety of challenges in in-
tegrating crowdsourcing within a database. In this paper, we build
on this work to design a principled and flexible data model and
query processor to meet these challenges. Reference [10], while
also dealing with crowdsourcing focuses mainly on the challenges
underlying user feedback for information integration rather than a
system for general declarative crowdsourcing.
Crowdsourcing Interfaces: There are multiple companies that
provide marketplaces where users can post tasks and workers can
find and attempt them. Mechanical Turk [3], oDesk [4], and Sama-
source [5] are three such companies. Yet other companies, such as
CrowdFlower [2] and ClickWorker [1] act as intermediaries allow-
ing large businesses and corporations to not have to worry about
framing and posting tasks directly to crowdsourcing marketplaces.
Crowdsourcing Programming Libraries: Turkit [22] and HProc
[18] are programming libraries designed to allow programmers to
interface with MTurk. These libraries support a procedural ap-
proach where the programmer needs to specify all the tasks, com-
bine their answers, orchestrate their execution and so on, whereas
we advocate a declarative approach where the DBMS is responsible
for these goals and also performs transparent optimizations.
Prior work in Databases: There has been prior work in the database
area on expensive predicate or user-defined function (UDF) evalu-
ation as part of query processing [11, 17]. While calls to crowd-
sourcing services can be viewed as UDFs, UDF evaluations are
much simpler than crowdsourcing calls, disallowing direct appli-
cation of prior work in this area: (a) UDF evaluations return the
same “correct” answer every time they are run. (b) Apart from the
computational cost of a UDF, there is no monetary cost. (c) There
is only one way to evaluate a UDF, and two UDFs cannot be com-
bined. (d) There is no advantage to evaluating multiple UDFs on
different items at the same time. The work on WSQ-DSQ [15] is
more relevant than the others in this area since it allows UDF calls
to be issued “in parallel”, and we do leverage the asynchronous
query processing elements from WSQ-DSQ in our system.

There has been a lot of prior work over the last decade on uncer-
tain databases with systems such as Trio [33], MystiQ [8], MayBMS
[6] and PrDb [32]. In Deco, we have made a conscious decision not
to expose uncertainty as a first-class construct to the end user. In-
stead, we provide explicit control to the schema designer on how
uncertainty should be resolved for each attribute group. This ap-
proach is not only simpler (and similar to the forms of uncertainty
resolution being used in crowdsourcing today), but it is more flex-



ible, and also eliminates the computationally intractable aspects of
dealing with uncertainty correlations between different attributes.
Intuitively, our intention is less to manage and query uncertain data
as it is to fetch and clean data.

Our data model is also related to the field of Global-As-View
(GAV) data integration [19]. In particular, our fetch rules can be
viewed as binding patterns or capabilities of sources [13, 20, 21],
and the conceptual schema can be viewed as a mediated database.
However, the properties and behavior of humans and sources are
different, necessitating different query processing techniques: First,
humans, unlike external data sources, need to be compensated mon-
etarily. Second, subsequent invocations of the same fetch rule im-
proves the quality of results since multiple humans would be con-
sulted, unlike external sources where repeating the same query re-
turns the same results. Third, different invocations of fetch rules
can be done in parallel (i.e., many humans may address tasks in
parallel), while external data sources have a single point of access.
Crowdsourcing Algorithms: Recently, there has been an effort to
design fundamental algorithms for crowdsourcing. In other words,
the algorithms, such as sorting, filtering and searching use human
workers to perform basic operations, such as comparisons, evalu-
ating a predicate on an item, or rating or ranking items. This work
is orthogonal to ours and can be used as part of the query proces-
sor of our Deco system. So far, there have been papers on filtering
items [26], finding max [16], searching in a graph [28], and sorting
and joins [23].

8. CONCLUSIONS
We presented Deco, a system for declarative crowdsourcing. Deco

offers a practical and principled approach for accessing crowd data
and integrating it with conventional data. We believe that our no-
tions of fetch and resolution rules provide simple but powerful
mechanisms for describing crowd access methods. We also believe
that our split conceptual/raw data model (top and bottom parts of
Figure 1), together with our “Fetch-Resolve-Join” semantics, yield
an elegant way to manage the data before and after cleansing. Our
query processor utilizes a novel push-pull execution model to al-
low worker requests to proceed in parallel, a critical aspect when
dealing with humans and other high-latency external data sources.
While our current Deco prototype does not yet perform sophisti-
cated query optimization, our design and system do provide a solid
foundation to study the cost, latency and accuracy tradeoffs that
make crowdsourced data such an interesting challenge.
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APPENDIX
A. JOIN ORDER

In this section, we show that all left outerjoin orders with the an-
chor table as the first operand followed by the dependent tables (in
any order) produce identical results. Let ./ denote the left outerjoin
operator.

THEOREM A.1. LetA be the anchor table, and letD1, D2, . . . ,
Dn be the dependent tables. Let π denote a permutation of 1 . . . n.
For all permutations π, the following expression Eπ evaluates to
the same result:

Eπ = (. . . ((A ./ Dπ(1)) ./ Dπ(2)) . . . ./ Dπ(n))

PROOF. Let t = (a1, a2, . . . , am) be a tuple inA. Let t(Dπ(i)) =
Πδπ(i)

({t} ./ Dπ(i)), where δπ(i) is the set of all dependent at-
tributes in Dπ(i). Note that none of the t(Dπ(i)) nor t share any
attributes. Now, let us consider

Etπ = (. . . (({t} ./ Dπ(1)) ./ Dπ(2)) . . . ./ Dπ(n))

which is intuitively the contribution of t to Eπ . Note that

Eπ =
⊎
t∈A

Etπ (1)

Now, we have:

Etπ = (. . . (({t} ./ Dπ(1)) ./ Dπ(2)) . . . ./ Dπ(n))
= (. . . (({t} × t(Dπ(1))) ./ Dπ(2)) . . . ./ Dπ(n)) (2a)
= (. . . ({t} × t(Dπ(1))× t(Dπ(2))) . . . ./ Dπ(n)) (2b)

...
= {t} × t(Dπ(1))× t(Dπ(2))× . . .× t(Dπ(n)) (2c)

Equality 2a holds by definition of left outerjoin. Equality 2b holds
because the left outerjoin is unaffected by the cross-product with
t(Dπ(1)) since no attributes are shared between t(Dπ(1)) andDπ(2).
Thus, ({t}× t(Dπ(1))) ./Dπ(2) = ({t} ./Dπ(2))× t(Dπ(1)) =
{t}× t(Dπ(2))× t(Dπ(1)). Subsequent equalities hold for similar
reasons.

Since × is associative and commutative, Etπ (Expression 2c) is
identical, independent of the permutation π. Since this argument
applies for each t in A, using Equation 1, the argument holds for
Eπ itself. In other words, the final result is independent of the
permutation π.

B. COMPARISON WITH CROWDDB
Since the CrowdDB data model is the closest one to ours, in

this section we perform a more thorough comparison between the
CrowdDB and Deco data models. Specifically, we show that the
Deco data model is more expressive than the CrowdDB data model
as described in [14].

B.1 Data Model
We first provide some examples of data model constructs Deco

supports that CrowdDB does not, and then show that the CrowdDB
data model as presented in [14] is an instance of the Deco data
model.
• Unlike CrowdDB, Deco does not require that every (concep-

tual) relation has a primary key. For instance, in our Restau-
rant example, there is no (nontrivial) key, since there could
be multiple cuisines for each name.
• Deco allows various kinds of fetch rules, and fetch rules may

be added or removed at any time. Thus, a Deco relation can

have fetch rule that adds more tuples, along with another fetch
rule that fills in missing values. A CrowdDB table on the other
hand only allows either fetching an entire tuple (CrowdTa-
bles) or filling in missing values (CrowdColumns).
• Deco allows user-defined resolution functions, for instance,

average-of-3 for rating. Or, the schema designer could spec-
ify a more sophisticated resolution function, such as average
of 3 to 10 values with standard deviation smaller than 1. Also,
the resolution functions are allowed to output multiple values
after resolution, for instance, dupElim for cuisine. On the
other hand, CrowdDB only allows a majority vote for each
attribute with a fixed maximum number of votes.
• Deco retains all crowdsourced data in raw tables, while

CrowdDB discards crowdsourced data and populates the re-
solved values in its relations. If a new resolution function is to
be applied or more crowdsourced data is provided, Deco can
easily recompute the new resolved value on-demand, while
CrowdDB will need to start afresh.

We now show that the CrowdDB data model is an instance of the
Deco data model. CrowdDB supports regular relations, however,
some relations may be designated as CrowdTables. For those rela-
tions that are not CrowdTables, some attributes may be designated
as CrowdColumns.
CrowdColumns: The regular relations in CrowdDB that contain
CrowdColumns may be expressed in Deco as conceptual relations
with the same schema. We first designate the set of all attributes
that are not CrowdColumns to be the anchor attribute group of that
conceptual relation. (Note that in CrowdDB one of these attributes
will be the primary key.) We may then express each CrowdCol-
umn as a dependent attribute group. Since CrowdDB uses a ma-
jority vote to resolve multiple answers, we use the same majority
vote as the resolution function for each dependent attribute. The
anchor attribute group has duplicate elimination as the resolution
function. The fetch rule used in CrowdDB to populate values in
CrowdColumns is a single one from all the anchor attributes to all
the dependent attributes.
CrowdTables: We can represent CrowdTables once again as a sin-
gle conceptual relation in Deco. We designate the key attribute as
the anchor attribute. Each of the other attributes is designated as a
separate dependent attribute. As before, the resolution function for
each of these dependent attributes is a majority vote. The resolution
function is set to be duplicate elimination for the anchor attribute.
In CrowdDB, entire tuples may be crowdsourced (which is equiv-
alent to a fetch rule ∅ ⇒ all-attributes) or some attributes whose
majority has already been reached are provided, and the other at-
tributes are crowdsourced (which can be captured by a fetch rule
D⇒D′, where D ∪D′ = all-attributes).
Thus, the Deco data model captures the CrowdDB data model as an
instance. We now discuss other issues that differ in the two system
designs.

B.2 Data Manipulation
Since CrowdDB does not store any of the unresolved raw data

explicitly, all relations are visible to an end user. CrowdDB thus
allows users to insert new tuples into these relations and to update
and delete existing tuples.

In Deco, conceptual relations may be materialized on demand
during query processing. As a result, we only allow updates and
deletes to tuples in the raw tables. Inserts, on the other hand, are
permitted on conceptual relations. They are handled just like fetch
rules: the raw tables that have attributes mentioned in the insert
statement are populated with new tuples.



Of course, a schema designer may wish to allow updates and
deletes to conceptual relations. They would need to be translated to
the raw tables, akin to update and delete rules in standard relational
databases [9].

B.3 Query Language and Semantics
CrowdDB uses standard relational queries with an optional LIMIT

clause to specify the maximum number of tuples required in the
output. CrowdDB ensures that no unresolved values are output
(i.e., all the CrowdColumns of each tuple must be filled in before
the tuple is output).

While LIMIT is related to our AtLeast construct, it has some-
what different semantics. AtLeast ensures a lower bound on the
number of output tuples given budget restrictions, while LIMIT
ensures an upper bound on the number of output tuples. Let us
consider a single-relation query. If there are no current tuples in a
CrowdDB relation, then the query processor will return an empty
result since the LIMIT clause does not place a lower bound on the
number of output tuples. Additionally, if there are many tuples

in a CrowdDB relation with all of their values already resolved,
CrowdDB will still only return the number of tuples specified in
the LIMIT clause (instead of all of them, even though returning all
the tuples would not require any further crowdsourcing calls).

CrowdDB also supports two constructs CROWDEQUALS (to
allow human-evaluated equality predicates) and CROWDORDER
(to allow human-based sorting). All comparisons are cached in
CrowdDB. In Deco, we can support these constructs using a simi-
lar approach. We create two conceptual relations: CrowdCompare
contains all triples of the form (a, b, V ) such that V corresponds to
the boolean value of the expression a < b, according to a human
worker. CrowdEquals contains all triples of the form (a, b, V ) such
that V corresponds to the boolean value of the expression a = b,
according to a human worker. Resolution rules can be applied on
these tables to improve the quality of the comparisons. Then, a
query involving CROWDEQUALS can be translated into a query
that joins with the CrowdEquals table. Similarly, a query involving
CROWDORDER can be translated into one with an operator that
implements the ORDER-BY semantics using CrowdCompare.


