
Incremental, Approximate Database Queries and Uncertainty for
Exploratory Visualization

Danyel Fisher
Microsoft Research

ABSTRACT

Exploratory data visualization calls for iterative analyses, but very
large databases are often far too slow to allow interactive
exploration. Incremental, approximate database queries exchange
precision for speed: by sampling from the full database, the
system can resolve queries rapidly. As the sample gets broader,
the precision increases at the cost of time. As the precision of the
sample value can be estimated, we can represent the range of
possible values. This range may be visually represented using
uncertainty visualization techniques. This paper outlines the
current literature in both incremental approximate queries and in
uncertainty visualization. The two fields mesh well: incremental
techniques can collect data in interactive time, and uncertainty
techniques can show bounded error.

Keywords: Uncertainty visualization, incremental visualization,
approximate visualization, very large data, exploratory data
analysis.

Index Terms: H.2.4 [Database Management]: Systems—Query
Processing; H.5.2 [Information Interfaces] User Interfaces—
Graphical User Interfaces.

1 INTRODUCTION

We live in an era of ever-faster computing systems, but larger
storage and information lead to slower database queries. This is
unfortunate, as the field of visual analytics has often focused on
the value of exploratory visualization: a process of iterating
through queries to learn more about a dataset. Users expect to ask
a question of the data, get a response, and then generate a new
round of questions. Getting one result from a dataset serves as a
cue for the next query.

Very large databases make interactivity much more difficult, as

a full query across the entire dataset can be very slow. Several

data analysis systems, such as Tableau, Vertica, and Microsoft’s

PowerPivot, have incorporated high-speed in-memory column-

oriented storage in order to scale to interactive queries across

millions of rows. Beyond this range, however, there is a more

fundamental issue: a database simply cannot produce a full

response to a query in interactive time.

In this paper, we take as a primary goal the idea of presenting

useful results to the user at interactive speeds. We accept that

there will always be some queries that are too slow to fully

complete as rapidly as a user might wish; we look for ways to

reduce the impact of these limitations. Enabling these scenarios

will require both new designs for visualization and system design.

1.1 Interaction Assists Exploratory Visualization

Several projects have attempted to distinguish between

exploratory visualization and presentation (e.g. [22]). In

presentations, the audience and presenters expect precision: the

visualization should be based on the best data possible.

In contrast, exploratory visualization can be understood as

iterating through a series of visualizations rapidly enough to make

a decision based on data. In many cases, knowing a correct

answer within some percentage may be sufficient for decision-

making. Consider a sales manager examining recent sales tables:

learning that her branch sold approximately five times as many

widgets as sprockets will allow her to dive further into the widgets

category without worrying much about sprockets.

We might draw an analogy to a computer-graphics artist

looking at a rapidly-generated wireframe, rather than a full render

of an animated scene. The wireframe can be generated rapidly,

and may give the artist enough information to move props or

actors around.

Approximate results can help make decisions about datasets

rapidly. In the data cleaning phase, an analyst can discover that

some messy items swamp the dataset. In exploration, a quick

overview can help an analyst realize they have issued the wrong

query—and, once they have the right one, quick overviews can

help decide which region of the data is worthwhile focusing on. In

some cases, approximate results might allow a time-critical

decision to be made faster without having to wait for a long

processing job.

Today, analysts will sometimes separate a tractable subset of

their database, and work off of that subset, creating data cleaning

scripts and preliminary graphs. They then run those same scripts

on the full database. The analyst must judge how large a sample

of data to collect, and must decide whether the sample is

representative. In few cases does the analyst expect to make

decisions based on a sample. Incremental processing allows a

user to work off of increasingly-large samples, and thus

increasingly-certain results.

In general, we wish to visualize data rapidly enough to

encourage the user to be able to string tasks together interactively.

Card et al suggest a timing model which describes how long a

user might stay on task [2] (and later work on timing by Seow,

[25]). Responses less than 0.1 seconds are perceived as nearly

instantaneous; anything less than one second is understood as an

prompt response. On the other hand, if a system takes more than

ten seconds to reply to a query, the user will perceive the

questioning and answering as separate tasks.

1.2 Big Data: Hard for Databases and Visualizations

That sort of timing is an ambitious goal. Any compute job that

touches large data—in the terabyte range and up—requires a

substantial amount of time. Disks are limited in reading speed;

networks are limited in throughput. In distributed networks, such

as Hadoop, Amazon EC2, or Microsoft’s Azure, there can be

individual machines may run slowly; consolidating data from

danyelf@microsoft.com

1 Microsoft Way, Redmond, Washington. 98052 USA

multiple machines may also saturate bandwidth. While increased

bandwidth, parallelism, or clever storage schemes may

temporarily achieve interactive rates against large datasets, ever-

larger datasets keep pace with innovations.

In the visualization community, large data has also been a

challenge. Information visualization research was forced to face

issues of scale over a decade ago, when datasets grew larger than

the number of pixels on screen: a threshold crossed around a

million items, or a few megabytes of data. Pioneering work by

Shneiderman [26] and others argued that it is critical to

summarize data, either by ordering it hierarchically, or allowing

users to filter and zoom deeper into the dataset.

These techniques are limited by data constraints: a treemap may

be a good overview technique, but requires that each node have an

accurate count of the sizes of its children. Depending on the size

and storage of a dataset, that can be a very expensive

computation. In this paper, we identify classes of visualization

techniques that work well when our ability to collect data rapidly

is limited.

1.3 Approximate Visualizations of Incremental Data

We can use incremental data sampling to generate approximate

answers for many types of queries. While it is possible to generate

a visualization based on a sample of a dataset, we wish to allow

users to interactively choose to trade time for accuracy. For

appropriately-formed queries, many queries should be able to

produce an approximate answer rapidly; as the data request

progresses, the user can get a more detailed, and more accurate,

response. The user can choose to interrupt at any moment, when

they have enough information to act on the data, create a new

query, or decide to wait for more detailed data.

Figure 1. Hypothetical comparison on quality of answers for a

system computing incremental results. While the traditional,

fixed system generates a complete answer sooner, the

incremental system has fairly tight bounds much earlier.

Figure 1 illustrates a (hypothetical) accuracy-vs-time trade-off

curve. The Y axis represents the degree of accuracy of the query

response, expressed as a fraction of the true value. In the

incremental case, the system produces useful results almost

immediately (solid line); at a later time, the full query (dotted line)

returns. At that moment, the full query is more accurate (but only

slightly) than the incremental partial results had been.

These techniques apply to data and queries where a sample can

be visualized usefully, such as aggregate visualizations. In

contrast, visualizations that emphasize individual datapoints will

be much less successful.

Two fields of research converge to make this possible. On the

one hand, the database community has carried on a tradition of

research looking at incremental and online data querying

techniques, examining systems and situations where it works well.

These techniques have not yet become mainstream. On the other

hand, the data visualization community has wrestled with

concepts of collecting and visualizing data that is subject to

‘uncertainty’; however, the field seems to have had limited

success in finding useful examples of uncertain data. This paper

unifies these literatures, suggesting interactions between them.

Aspects of this have been mentioned before. The CONTROL

project [9][11] is a major inspiration for the area of online,

interactive data analysis. The CONTROL project is motivated in

part by allowing users to interactively generate visualizations.

However, the authors have not presented appropriate

visualizations that would go with their interactive database.

Olston and Mackinlay [20] mention incremental sampling as a

potential motivator for their visualization of uncertainty, and refer

back to the CONTROL project, but provide little detail on how

those techniques might be carried out in practice. In this paper, we

attempt to overview both literatures, in an attempt to describe the

costs and benefits of incremental visualizations.

We propose a workflow as in Table 2: the user begins a

computation process that iteratively updates a visualization with

ever better estimates and confidence bounds.

This paper intends to motivate incremental analysis from both

the data side and the visualization side, and argues that the two

should be brought together. First, the paper contributes as a

review of techniques for handling large data, including pre-

aggregation and online querying; it discusses statistical bounds

that help describe the range of the data, and discusses the

implications for arranging data in disks and networks. Second, it

reviews the visualization literature on uncertainty and on

aggregation, and links the notion of uncertainty to the

probabilistic results produced in the previous section. Last, it

introduces a prototype system, “TeraSim,” that generates iterative,

convergent data for visualization. While TeraSim is still in

construction, its design illustrates how a pipeline from data

through visualization can be brought together.

Table 2. Workflow for incremental visualization system. SQL

syntax is for illustration only.

Incremental Visualization System

1. Large Data is stored on disk or distributed system

2. User selects a dataset within their visualization

system; system issues aggregate query
SELECT APPROXIMATE CATEGORY, SUM(*)
FROM Table T
WHERE Condition=C
GROUP BY CATEGORY

3. Database begins to produce histograms of

(CATEGORY, SUM, CONFIDENCE BOUNDS).

4. Visualization updates to reflect categories and

values from the database.

5. If the user chooses to interrupt, then the

visualization stops; otherwise, repeat step 3 with

more detail.

6. User issues new query, or waits for computation to

complete.

2 DEALING WITH LARGE DATA

The notion of “large” data changes with computer technologies.

Papers in the VLDB (“Very Large Databases”) conference of

1975 referred to tables of millions of entries [27]; current work

looks at analyses of web-scale datasets—a handful of orders of

magnitude larger. During the intervening 35 years, the use of

multiple parallel data stores and networked databases has stayed

constant. Separating data onto multiple disks and network means

that any query against the data will be costly.

2.1 Pre-Aggregation is Fast, but Inflexible

This problem has been recognized for a very long time. OLAP [3]

is a technology that partially pre-aggregates data into ‘cubes’,

stored in a ‘data warehouse’. The cubes are chosen to expose

major facets of the data, while reducing the number of individual

elements. For example, a retailer might store individual sales

transactions in a transactional database; the warehouse might then

store all transactions aggregated by product, sales date, and retail

outlet. This warehouse would be very quick to reply to queries

like “how many widgets were sold on Wednesday?” However, it

would be unable to address queries that require dimensions not

stored in the cube, such as “how many customers from ZIP code

98052 purchased a widget?” While an offline data warehouse is a

fast way to handle data, we are particularly concerned that the

user be able to formulate queries based on dimensions that were

not previously expected.

As an example from the Information Visualization field, the

Hotmap [8] project visualized where users downloaded tiles from

Microsoft’s Bing Maps. While the datasource started with raw

HTTP logs, they were pre-processed offline into a fixed data

structure to allow for quick retrieval. Hotmap needed to know the

number of hits at each latitude and longitude, as a result, location

was used as a primary key. While this new format allowed for

interactive navigation speeds, the pre-computation phase was very

long (eliminating the possibility of looking at daily changes) and

allowed only a certain set of queries. For example, the system

could address queries about the date of the web hit, but not the IP

address of the requestor (a field that was not indexed). This pre-

aggregation limited the analyses that could be done with the

system without extensive manual labor and slow computation.

Figure 2. The Hotmap project. Brighter spots have had more

people look at them.

Some issues with speed can be alleviated by carefully planning

out a sequence of queries. Chan et al [4] show a system which

keeps ahead of viewers by adaptively prefetching data near where

they currently are. This means that users will always have the

illusion of available data. This solution, like other forms of pre-

aggregation, works best when the user’s options are limited: if the

user can choose from a very broad selection of choices, then the

amount of data to be prefetched will be similarly large.

2.2 Parallel Computation for Big Data

One way to handle very large datasets is to parallelize storage and

computation. Rather than storing all the data on a single

machine—limited by the one machine’s memory, disk bandwidth,

and computation speed—large datasets can be spread across a

distributed database. In the last few years, the MapReduce [5]

concept has become a popular way to store large data in parallel.

Distributed machines each store a portion of the dataset, and a

query is run against each distributed machine separately. Each

machine runs the query locally (“map”), and then an aggregation

site brings together all of these results into a single result set

(“reduce”). One major advantage of this scheme is that data size is

no longer a problem: each machine handles a constant amount of

data.

Several query languages have been written specifically against

MapReduce-type clusters. Sawzall [21] is a specialized language

for MapReduce, which allows users to precisely express each step

as simple syntax. DryadLINQ [34] extends C#’s LINQ

(“Language INtegrated Query”) syntax to allow users to write

queries that have a parallel component; the system then

propagates the query across multiple machines in parallel.

DryadLINQ also computes a full directed graph of maps and

reduces, allowing multiple-step mappings and reductions.

Dremel [18] is also designed as a rapid query language against

large databases; while other systems are agnostic to underlying

data structures, Dremel requires that the data table be formatted as

a particular column-oriented database; while the pre-processing

for this column-orientation can be slow, the results allow for fast

queries.

These parallel systems make linear queries fast, limited only by

the read speed of their system. However, contemporary

implementations do not have mechanisms for reporting

incremental results: they touch every row before returning

complete results. Of course, any of these systems might be

modified to allow progressive queries: recently, MapReduce

Online [6] has offered online incremental queries against Hadoop

architectures; it allows increasingly-accurate results as further

time runs.

In general, this paper addresses precisely this issue: what would

the cost, and the value, be of adding progressive callbacks to

MapReduce-type systems and large data queries? In the next

section, we look first at approximate queries against large

datasets.

3 APPROXIMATE QUERIES FOR LARGE DATASETS

As we have noted above, serial scans of large datasets look at

individual records very rapidly. Rather than waiting until the scan

has touched the entire database, it might be possible to return

partial results. If that partial result is based on a fair random

sample of the dataset, it will have statistical bounds and properties

that can be used to approximate the remainder of the dataset.

Unfortunately, this is frequently not the case: data often comes

ordered on disk. In the next sections, we will discuss the

operations that are possible on such a sample, the challenges of

getting data into randomized order, and the sorts of statistical

statements that we can make about these aggregations.

3.1 Operations on Samples

Working from a sample of data implies that we can only carry out

some operations: we can use the limited sample to extrapolate

what the rest of the database looks like. We can then predict

bounds on the remainder of the dataset, and visualize these

bounds.

3.1.1 Using Aggregate Queries

Aggregate queries are of particular interest precisely because they

can reasonably be predicted from a limited subset of a database.

Computing the sum, count, and average are very common

aggregate queries, and can be computed both easily and precisely

online. For sum, count, and average queries against a random

sample, the size of the confidence interval inversely proportional

to the square root of the size of the sample, and proportional to the

variance of the dataset. Thus, as the sample grows, the confidence

interval decreases, allowing the user to see values converging.

These queries can be applied well to a variety of different types

of visualizations. A histogram, for example, can be understood as

a count query, separated by categories. Many popular

visualizations are one- or two-dimensional histograms: faceted

browsers, such as FacetMap [29], are simply histograms of

categories across different dimensions. Hotmap, discussed above,

is a two-dimensional histogram across a fairly large number of

possible buckets. While both of these projects showed precise

results, they would have worked well as approximations.

Some queries are harder. Percentile and median queries can be

estimated incrementally, but with diminished precision and ill-

defined bounds. Operations like finding the largest or smallest

values, or top-N lists, requires looking at every point, and so

cannot be reasonably approximated with samples.

We can also approximate some queries with others. While

finding a particular outlier is difficult, finding values that fall

outside a percentile range is entirely plausible.

3.1.2 Appropriate Data Characteristics

Beyond the type of query, the type of data matters, too. It is

desirable to have a finite number of categories: many of the

techniques discussed here cannot apply to histograms that are

wider than memory. In the example looking at corporate sales, a

histogram of product by number of people who bought it would

be easy to generate. On the other hand, a histogram of street

address by number of purchases made from it may well

overwhelm the histogram.

As the confidence level is a function of the variance of the data,

the distribution of the data columns also matter: the bounds of a

highly skewed distribution will converge much more slowly than

a more balanced distribution.

3.2 Randomly Selecting from Databases

The question of efficient random sampling from database files is

well-known ([19] has a survey of techniques from 1990). It is a

slow process to individually read random rows of a database; the

database system is optimized for reading continuous chunks of

memory. The quality of the random values can be traded for

speed, however: taking random pages from a disk table introduces

some bias, but is much faster than taking random rows. A second

trade-off is whether to sample with or without replacement.

Sampling with replacement can be statistically desirable;

however, sampling without replacement ensures that the process

will eventually cover all rows and eventually converge at the true

answer. (For small numbers of rows—a few percent of the

database—sampling with and without replacement are nearly

identical.)

Random sampling is implemented in major commercial

databases: the TABLESAMPLE keyword is now available in DB2

[10], SQL Server, and Oracle. Each of these allows a user to

specify a fraction of the result set to return. This random selection

can then be joined with other tables; the query could be repeated

to get a broader random sample. The TABLESAMPLE function

takes a random selection of pages in the database.

It might be possible to get rapid, partial answers by pre-

computing a large random sample of the database, especially in

cases where a full OLAP cube would still be too big (or too slow)

to be practicable. Recent work [14] explores creating and

maintaining these random samples.

3.3 Joining Sampled Data

The join operation is critical to sophisticated data analysis. To

understand the importance of the ‘join’ operation, recall the

marketing scenario from before. To examine customers who

returned for a second visit, or those who bought a t-shirt in the

same visit as a pair of pants, they will need to construct a join

statement: two different tables will need to be linked together.

Join operations are also needed to fill in metadata about columns,

navigate graph data structures, and link together different sources

of data.

While joining is a fundamental relational database operation,

joining can be difficult on both Map-Reduce and in sampled

datasets. On parallel Map-Reduce systems, join operations often

require substantial network bandwidth and computation to first

hash, then join entries together.

Joins cut substantially down on the size of samples, too: a

random 10% sample of two datasets to be joined together has just

a 1% chance of finding a row that matches between both datasets.

A system will need to keep intermediate join results in memory,

looking for matches—and data collection will be especially slow

if one of the joined attributes is highly filtered.

Much of the research from the CONTROL project tried to

establish ways to handle joining rapidly. One CONTROL

technique was the Hash Ripple Join [9]. In a typical join, a

database looks at all of the index values of one dimension into

memory (perhaps in portions), and then matches them against the

other dimension. The hash ripple join, in contrast, alternately

reads sets of rows from each dimension, incrementally building a

larger pool of rows that might match each other. The Ripple Join

suffers when it runs out of memory, however; the Scalable Hash

Ripple Join [17] addresses issues with both memory usage by

falling back to disk storage, and adds a capability to join across a

distributed system.

The Sort-Merge-Shrink Join [13] is an alternate strategy that,

similarly, works when the set of keys is larger than memory; in

addition, the Sort-Merge-Shrink Join offers robust statistical

estimates of both progress and running totals. However, it requires

the data on disk to be arranged in random order.

These methods might potentially be parallelized or run on a

distributed system. This line of research suggests that incremental

queries against joined data may be possible, and can be made both

fast and memory efficient.

3.4 Convergent Bounds on Values

An estimate is of limited utility if it does not allow us to also

understand how good an estimate it is. We can use confidence

bounds to control the visualization. Both the Ripple Join [9] and

Sort-Merge-Shrink [13] papers provide discussions of their

statistical estimators. These estimators are complex, as they need

to account for the statistical properties of the JOIN operation from

two different, dependent samples.

The notion of a ‘central limit theorem’ states that the

distribution of the mean of a sample of data is normally

distributed, with a variance proportional to the variance of the

dataset. This means that the mean of the full dataset can be

estimated from the mean of the sample. In general, a variety of

different central limit bounds can be applied straightforwardly to

these sampling problems; different properties of the data may

allow tighter bounds, depending on how the underlying data is

distributed. We may therefore expect that an approximate,

incremental operation should return both a value, and a

probability distribution function (such as 95% confidence

bounds).

3.5 Sketch Estimators

A different approach to trading speed for accuracy is through

database “sketch estimators.” Database sketches attempt to rapidly

aggregate data by keeping summaries that are smaller than the

number of items. Sketches maintain probabilistic aggregations of

values, which can be queried rapidly. Ruso and Dobra [23]

compares several different sketch estimators, and provides their

statistical properties, including evaluating the quality of the

estimators that they produce.

4 VISUALIZING AGGREGATE AND INCOMPLETE DATA

We have largely discussed the techniques that might be used to

power and drive an interactive aggregate visualization system. In

this section, we turn from examining databases to visualization

research. There has largely been little work linking approximate

database queries with uncertainty visualization, although the two

seem like a logical obvious fit. Olston and Mackinlay are a

dramatic exception: their work on bounded uncertainty explicitly

mentions incremental data updates as one likely scenario [20].

However, their work focuses specifically on visualization

techniques, and does not discuss database sampling issues. In this

section, we discuss Infovis research on uncertainty, focusing in

particular on visualizations that are likely to be appropriate for

approximate databases.

4.1 Types of Visualizations

Only certain visualization techniques would be appropriate to

incremental visualizations. In this section, we discuss several

visualizations that can or do not apply to large data visualizations.

In Shneiderman’s discussion of “squeezing a billion points into a

million pixels” [26], he distinguishes between “one point per

pixel” techniques, which will require zooming, and aggregate

visualizations. A scatterplot is an example of the former: a

scatterplot of a billion points must plot (and overplot) a billion

pixels.

4.1.1 Aggregate Visualizations

In contrast, aggregate visualizations count elements. Those same

billion points might be drawn as a two-dimensional histogram,

showing the number of points that occur within each region. This

latter visualization can be imprecise without losing its meaning.

A treemap is similarly a sort of histogram, with each cell as a

counted group-by operation.

Elmqvist and Fekete [7] suggest a broad spectrum of ideas for

aggregate visualizations. While the paper refers to these as

“hierarchical” visualization, their technique is to ensure that

individual data points are aggregated together. They suggest

visualizations that can be aggregated by sum, average, median,

and other statistical measures. They suggest using hierarchical

clustering as a base techniques to modify well-known

visualizations (such as scatter plots, parallel coordinates, and star

glyphs) into aggregate visualizations by summarizing parts of

graphs. Many of their techniques are appropriate for the aggregate

visualizations we discuss here, although the navigation techniques

they discuss to zoom in or peel away layers of data would, in all

likelihood, trigger new queries.

4.1.2 Tag Clouds

Tag Clouds are a common visualization that does not hinge on

precision [32]. As there are only so many possible sizes for text, a

small uncertainty range makes little difference to the tags. It may

be possible to render the most frequent words in a visualization

using the constraints suggested by ManiWordle [15]. (As Kosara

shows, however, adding blur to text may render it unreadable,

rather than indicating—as one might hope—that the value

associated with the word is uncertain [16]. Other types of

annotations might help indicate uncertainty, however.)

4.2 Uncertainty Visualization

In addition to portraying the estimated value, it is desirable for the

visualization to show the range of possible values or estimates. As

noted above, there seems to be a natural match between some

forms of ‘uncertainty visualization’ and the approximate values

with ranges that these estimation techniques produce. The term

‘uncertainty’ has taken on many meanings within the field of

information visualization; authors have used it to refer not only to

uncertain data values, but to the quality, provenance, and even the

structure of data (summarized in [28]). A broad typology of both

sources and types of uncertainty in geospatial data [31] provides

additional detail. Zuk and Carpendale [35] analyze several

uncertainty visualizations using frameworks established by Bertin,

Tufte, and Ware, finding that standard rules of visualization were

only sparingly used within uncertainty visualizations,

compromising reader’s abilities to understand the visualization.

4.2.1 Statistical and Quantitative Uncertainty

Of this broad family of uncertainty, we are interested solely in

quantitative uncertainty: places where we know a numerical

result, possibly within a degree of precision (that is, statistical

uncertainty). In [30], the authors produce a model for maintaining

uncertainty information in a spreadsheet. They introduce three

forms of uncertainty: estimates which are known to be inaccurate

(but not by how much); intervals, in which a value is known to

fall into a range; and probabilities, in which a value can be

expressed as a probability curve. These allow them to create

approximate line graphs, using translucency for probability,

dotted lines for estimation, and filled regions for ranges (Figure 3,

bottom). They also offer a 3D chart, which uses translucency at

each point to represent probability.

Similarly, Olston and Mackinlay [20] render bounded and

statistical uncertainty. They use error bars to indicate statistical

ranges (as error bars indicate a ‘likely region and estimator’); they

render bounded (such as 4.5 +/- 3) as “graphical fuzz”, greyed

regions. Their techniques work well for scatterplots and line

charts; they are forced to compromise for stacked-bar charts and

pie charts (Figure 3, top-left).

4.2.2 Challenges in Quantitative Visualization of
Uncertainty

Several user studies of uncertainty visualization have suggested

that there are real challenges to making uncertain data easily

readable to users. Kosara [16] argues that while blur might help

cue depth, it is difficult to compare different amounts of blur.

Wittenbrink et al test several different glyphs that can be used

to highlight uncertainty in vector fields [33]. Their research,

which examines glyphs that show uncertainty in both angle and

length, evaluates tradeoffs not raised by others. For example,

when a vector has some uncertainty in both magnitude and angle,

many natural encodings would be drawn across a greater area,

suggesting that the values were bigger or more important, rather

than just more uncertain. Figure 3, top-middle, shows one of their

uncertainty-encoded charts.

Sanyal et al [24] also study bounded uncertainty, evaluating

different techniques for visualizing uncertain values. They

generate uncertain data, and find that error bars provide

disappointing results while other mappings (including glyph color

and glyph size), while still having high error rates, are somewhat

more accurate. Figure 3, top right, has the error bars condition

from their study.

4.2.3 Changing Values

As the compute process progresses, it should repeatedly update

the visualization with tighter bounds and better estimates. A user

should expect that when the process converges, it will deliver a

visualization with no uncertainty at all. These constraints require

that the uncertain region is drawn in ways that are consistent with

the final visualization, so they can be removed. Olston &

Mackinlay’s implementation, for example, succeeds at this: their

error bars and fuzzy regions would shrink as the computation

progresses.

In order to smooth the process of transition, an animation

engine (such as DynaVis [12]) could enable smooth transitions

between states as the values update. The designer might also want

to allow the user to track how the visualization is changing over

time: past research has shown [22] that animation can be a poor

way to allow users to see differences. For example, the user may

wish to track the rate at which regions are converging, or see

whether the mean estimate is staying within its estimators.

Visualization techniques like showing tracks [22] or allowing old

versions of the value to linger on screen (as in Phosphor [1] can

allow a user to track changing values.

4.3 Conclusion: Uncertainty Visualization

The techniques discussed above have a number of properties in

common: they show ranges of information, mapped as an extra

dimension of the visualization: error bars, fuzz zones, and

uncertainty-encoded glyphs take up additional space on the

screen. In other work, researchers have looked at mapping color to

certainty, allowing the visualization to maintain its standard space

requirements. For the incremental visualizations we look at here,

we may find that the uncertainty is not to be measured per data

item, but rather in the visualization as a whole—that is, the whole

dataset might be described with a given level of uncertainty,

which might open up new alternative visualization types.

5 IMPLEMENTING A PROTOTYPE SIMULATOR SYSTEM

This paper has so far discussed existing work. In this section, we

discuss our system in progress, known as TeraSim, which allows

us to simulate a large cloud-based data store. We have chosen to

build this as a simulation, rather than as a full cloud-based system,

in order to control variables such as latency, amount of data that

can be read at once, and even network topology. TeraSim

simulates a large-scale back-end server which stores a large set of

data, and a front-end computation hub. The back-end server can

be configured with the amount of data it controls, its disk read

Figure 3. Techniques for visualizing quantitative uncertainty. (Top Left) Error bars for scatter plot and bar chart; ‘ambiguation’ areas for pie chart
and stacked bar chart [20]. (Top Middle). Vector glyphs showing uncertainty in both length and angle. The area of the vector arrow shows
uncertainty; a certain vector is a thin line [33]. (Top Right) A line chart showing error bars to indicate uncertainty; one of the techniques attempted
in [24]. (Bottom) Showing approximate uncertainty, range uncertainty, and a probability distribution function across certainty on a line chart [30].

speed (expressed as number of rows per second), and its

communication latency.

We are using TeraSim to explore a variety of different

visualization techniques over this data. Our goals are to explore

possible visualizations of confidence levels and approximate

results; to better understand the database constraints needed to

support them; and to explore how users interact with changing

data.

In reality, TeraSim is implemented as a single application

running over a single commodity database. The database contains

pre-sampled data, with a few millions of rows. The results that it

provides can be scaled up (simply by repeating values) to simulate

billions or more of rows. The front-end can issue queries to the

database, which returns appropriate statistical properties: usually

means, counts, and standard deviations. The front-end then

combines these counts to generate its estimates and error bounds,

and presents them to the user. The front-end iterates its queries to

the back end, getting back increasingly-large estimates.

TeraSim is designed to handle multi-dimensional histogram

queries of the form

SELECT <G1, G2>, MEAN/SUM/COUNT (*)
FROM <TABLE>
WHERE <Condition>
GROUP BY <G1, G2>

where the condition is limited only on columns that are in the

table and the group can take one or many columns. TeraSim

cannot, however, handle join operations.

We are in the process of extending the back-end so that the

system can simulate a cloud of computers, rather than a single

machine. At that point, each back-end machine will pass back not

its own confidence bounds, but rather components that will allow

the front-end to compute the confidence bounds. For example, the

SUM estimator is based on the sum of the entire back-end sample,

multiplied out to match the size of the full dataset. Each back-end

replies with the sum of the back-end sample and their fraction of

the size; the system combines these across all of the machines to

generate a single estimator. Similarly, the error bounds are

computed based on the standard deviation of the sample; each

simulated machine will compute a partial result, and the front-end

will combine them.

5.1 Passing Incremental Data

In our current implementation, TeraSim passes entire histograms

at a time. Each server computes its histogram and passes it to the

front-end; the front-end, in turn, replaces its current histogram and

re-renders. As we experiment with more (simulated) back-end

servers and more data, we are beginning to encounter times when

passing the entire histogram for a dataset gets large (such as when

we group on vocabulary within a document.) We are designing a

system for with passing incremental histograms: tables that

represent only the difference from the previous data.

While TeraSim is in early stages yet, we are finding it a robust

platform to explore several different types of data, and to motivate

further research on building incremental and scalable back-ends.

6 CONCLUSION

In this paper, we have contributed four interrelated ideas:
First, we have argued for linking incremental data querying

techniques to visualizations. We have shown applications and

uses where rapid, less-accurate results are more valuable than

slow, more-accurate results.

Second, we have highlighted the major issues in the data

sampling literature, including the difficulty of getting a good

random sample, and the challenges involved in join queries.

Third, we have discussed some visualization tools that help

indicate how the visualization field could connect the uncertainty-

laden data produced by these approximate queries.

Last, we have discussed TeraSim, a testbed for visualizing real-

time results from dynamic queries across large data.

ACKNOWLEDGEMENTS

My thanks to the many collaborators who have provided critical

feedback on this work, including Steven Drucker, John Platt,

Christian Konig, and the anonymous reviewers. Research on this

project was motivated by probing questions from Sean Boon and

Alex Gorev. Shankar Narayanan implemented the first steps

toward TeraSim.

REFERENCES

[1] P. Baudisch, D. Tan, M. Collomb, D. Robbins, K. Hinckley, M.

Agrawala, S. Zhao, and G. Ramos. Phosphor: explaining transitions

in the user interface using afterglow effects. In Proceedings of the

19th Annual ACM Symposium on User Interface Software and

Technology (UIST '06). ACM, New York, NY, USA, 169-178. 2006.

[2] S. Card, G. Robertson, and J. Mackinlay. The Information

Visualizer, an Information Workspace. In Proceedings of the

SIGCHI conference on Human factors in computing systems:

Reaching through technology (CHI '91). ACM, New York, NY,

USA, 181-186. 1991.

[3] S. Chaudhuri and U. Dayal. An overview of data warehousing and

OLAP technology. SIGMOD Record. 26(1):65-74. March 1997.

[4] S.-M. Chan, L. Xiao, J. Gerth, P. Hanarhan. Maintaining

interactivity while exploring massive time series. In Proceedings of

IEEE VAST 2008: 59-66. 2008.

[5] F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wallach, M.

Burrows, T. Chandra, A. Fikes, and R. Gruber. Bigtable: a

distributed storage system for structured data. In Proceedings of the

7th USENIX Symposium on Operating Systems Design and

Implementation (OSDI '06), Vol. 7. USENIX Association, Berkeley,

CA, USA, 15-15. 2006.

[6] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy,

and R. Sears. MapReduce online. In Proceedings of the 7th USENIX

conference on Networked systems design and implementation

(NSDI'10). USENIX Association, Berkeley, CA, USA, 21-21. 2010.

[7] N. Elmqvist and J.-D. Fekete. Hierarchical Aggregation for

Information Visualization: Overview, Techniques, and Design

Guidelines. IEEE Transactions on Visualization and Computer

Graphics 16(3):439-454. May 2010.

[8] D. Fisher. Hotmap: Looking at Geographic Attention. IEEE

Transactions on Visualization and Computer Graphics 13(6): 1184-

1191. November 2007.

[9] P. Haas, J. Hellerstein. Ripple Joins for Online Aggregation. In

Proceedings of ACM SIGMOD International Conference on

Management of Data. 1999.

[10] P. Haas. The Need for Speed: Speeding Up DB2 Using Sampling.

IDUG Solutions Journal, 10:32–34. 2003.

[11] J. Hellerstein, R. Avnur, A. Chou, C. Olston, V. Raman, T. Roth, C.

Hidber, P. Haas. Interactive Data Analysis with CONTROL. IEEE

Computer, 32(8). August, 1999.

[12] J. Heer and G. Robertson. Animated Transitions in Statistical Data

Graphics. IEEE Transactions on Visualization and Computer

Graphics 13(6): 1240-1247. November 2007.

[13] C. Jermaine, A. Dobra, S. Arumugam, S. Joshi, and A. Pol. The

Sort-Merge-Shrink Join. ACM Transactions on Database Systems

31(4): 1382-1416. December 2006.

[14] S. Joshi and C. Jermaine. Materialized Sample Views for Database

Approximation. IEEE Transactions on Knowledge and Data

Engineering. 20(3): 337-351. March 2008.

[15] K. Koh, B. Lee, B. Kim, and J. Seo. 2010. ManiWordle: Providing

Flexible Control over Wordle. IEEE Transactions on Visualization

and Computer Graphics 16(6): 1190-1197. November 2010.

[16] R. Kosara, S. Miksch, and H. Hauser. Semantic Depth of Field. In

Proceedings of the IEEE Symposium on Information Visualization

2001 (INFOVIS'01). IEEE Computer Society. 2001.

[17] G. Luo, C. Ellmann, P. Haas, and J. Naughton. A Scalable Hash

Ripple Join Algorithm. In Proceedings of the 2002 ACM SIGMOD

International Conference on Management of Data (SIGMOD '02).

ACM, New York, NY, USA. 2002.

[18] S. Melnik, A. Gubarev, J. Long, G. Romer, S. Shivakumar, M.

Tolton, and T. Vassilakis. Dremel: interactive analysis of web-scale

datasets. In Proceedings of the VLDB Endowment. 3(1-2):330-339.

September 2010.

[19] F. Olken and D. Rotem. 1990. Random sampling from database

files: a survey. In Proceedings of the 5th international conference on

Statistical and Scientific Database Management (SSDBM'1990),

Zbigniew Michalewicz (Ed.). Springer-Verlag, London, UK, 92-111.

1990.

[20] C. Olston and Mackinlay, J. Visualizing data with bounded

uncertainty. In Proceedings of IEEE Symposium on Information

Visualization, pp. 37-40. 2002

[21] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan. Interpreting the

data: Parallel analysis with Sawzall. Scientific Programming Journal.

13(4): 277-298. October 2005.

[22] G. Robertson, R. Fernandez, D. Fisher, B. Lee, and J. Stasko,

Effectiveness of Animation in Trend Visualization. IEEE

Transactions on Visualization and Computer Graphics. 14(6):1325-

1332. November 2008

[23] F. Rusu and A. Dobra. Statistical analysis of sketch estimators. In

Proceedings of the 2007 ACM SIGMOD International Conference

on Management of Data (SIGMOD '07). ACM, New York, NY,

USA, 187-198. 2007.

[24] J. Sanyal, S. Zhang, G. Bhattacharya, P. Amburn, and R. Moorhead.

2009. A User Study to Compare Four Uncertainty Visualization

Methods for 1D and 2D Datasets. IEEE Transactions on

Visualization and Computer Graphics 15(6): 1209-1218. November

2009.

[25] S. Seow. Designing and Engineering Time: the Psychology of Timer

Perception in Software. Boston:Pearson Education. 2008

[26] B. Shneiderman: Extreme visualization: squeezing a billion records

into a million pixels. In Proceedings of the 2007 ACM SIGMOD

International Conference on Management of Data (SIGMOD '07). 3-

12. 2007.

[27] W. Simonson and W. Alsbrooks. A DBMS for the U. S. Bureau of

the Census. In Proceedings of the 1st International Conference on

Very Large Data Bases (VLDB '75). ACM, New York, NY, USA,

496-498. 1975.

[28] M. Skeels, B. Lee, G. Smith, and G. Robertson. Revealing

Uncertainty for Information Visualization. In Proceedings of the

Working Conference on Advanced Visual Interfaces. ACM, New

York, NY, USA. 2008, 376-379

[29] G. Smith, M. Czerwinski, B. Meyers, D. Robbins, G. Robertson, and

D. Tan. FacetMap: A Scalable Search and Browse Visualization.

IEEE Transactions on Visualization and Computer Graphics 12(5):

797-804. September 2006.

[30] A. Streit, B. Pham, and R. Brown. A Spreadsheet Approach to

Facilitate Visualization of Uncertainty in Information. IEEE

Transactions on Visualization and Computer Graphics 14(1): 61-72.

January 2008.

[31] J. Thomson, E. Hetzler, A. MacEachren, M. Gahegan and M. Pavel,

A typology for visualizing uncertainty. In Proceedings of SPIE &

IS&T Conference on Electronic Imaging, Visualization and Data

Analysis 2005, 5669: 146-157. 2005.

[32] F. Viegas, M. Wattenberg, and J. Feinberg. Participatory

Visualization with Wordle. IEEE Transactions on Visualization and

Computer Graphics 15(6):1137-1144. November 2009.

[33] C. Wittenbrink, A. Pang, and S. Lodha. Glyphs for Visualizing

Uncertainty in Vector Fields. IEEE Transactions on Visualization

and Computer Graphics. 2(3):266-279. September 1996.

[34] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. Kumar

Gunda, and J. Currey. DryadLINQ: a system for general-purpose

distributed data-parallel computing using a high-level language. In

Proceedings of the 8th USENIX Conference on Operating Systems

Design and Implementation (OSDI'08). USENIX Association,

Berkeley, CA, USA, 1-14. 2008.

[35] T. Zuk and S. Carpendale. Visualization of Uncertainty and

Reasoning. In Proceedings of the 8th international symposium on

Smart Graphics (SG '07). Springer-Verlag, Berlin, Heidelberg. 2007.

	Abstract
	1 Introduction
	1.1 Interaction Assists Exploratory Visualization
	1.2 Big Data: Hard for Databases and Visualizations
	1.3 Approximate Visualizations of Incremental Data

	2 Dealing with Large Data
	2.1 Pre-Aggregation is Fast, but Inflexible
	2.2 Parallel Computation for Big Data

	3 Approximate Queries for Large Datasets
	3.1 Operations on Samples
	3.1.1 Using Aggregate Queries
	3.1.2 Appropriate Data Characteristics

	3.2 Randomly Selecting from Databases
	3.3 Joining Sampled Data
	3.4 Convergent Bounds on Values
	3.5 Sketch Estimators

	4 Visualizing Aggregate and Incomplete Data
	4.1 Types of Visualizations
	4.1.1 Aggregate Visualizations
	4.1.2 Tag Clouds

	4.2 Uncertainty Visualization
	4.2.1 Statistical and Quantitative Uncertainty
	4.2.2 Challenges in Quantitative Visualization of Uncertainty
	4.2.3 Changing Values

	4.3 Conclusion: Uncertainty Visualization

	5 Implementing a Prototype Simulator System
	5.1 Passing Incremental Data

	6 Conclusion
	Acknowledgements
	References

