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ABSTRACT 

Exploratory data visualization calls for iterative analyses, but very 
large databases are often far too slow to allow interactive 
exploration. Incremental, approximate database queries exchange 
precision for speed: by sampling from the full database, the 
system can resolve queries rapidly. As the sample gets broader, 
the precision increases at the cost of time. As the precision of the 
sample value can be estimated, we can represent the range of 
possible values. This range may be visually represented using 
uncertainty visualization techniques. This paper outlines the 
current literature in both incremental approximate queries and in 
uncertainty visualization. The two fields mesh well: incremental 
techniques can collect data in interactive time, and uncertainty 
techniques can show bounded error. 
 
Keywords: Uncertainty visualization, incremental visualization, 
approximate visualization, very large data, exploratory data 
analysis. 
 

Index Terms: H.2.4 [Database Management]:  Systems—Query 
Processing; H.5.2 [Information Interfaces] User Interfaces—
Graphical User Interfaces. 

1 INTRODUCTION 

We live in an era of ever-faster computing systems, but larger 
storage and information lead to slower database queries. This is 
unfortunate, as the field of visual analytics has often focused on 
the value of exploratory visualization: a process of iterating 
through queries to learn more about a dataset. Users expect to ask 
a question of the data, get a response, and then generate a new 
round of questions. Getting one result from a dataset serves as a 
cue for the next query. 

Very large databases make interactivity much more difficult, as 

a full query across the entire dataset can be very slow. Several 

data analysis systems, such as Tableau, Vertica, and Microsoft’s 

PowerPivot, have incorporated high-speed in-memory column-

oriented storage in order to scale to interactive queries across 

millions of rows. Beyond this range, however, there is a more 

fundamental issue: a database simply cannot produce a full 

response to a query in interactive time.  

In this paper, we take as a primary goal the idea of presenting 

useful results to the user at interactive speeds. We accept that 

there will always be some queries that are too slow to fully 

complete as rapidly as a user might wish; we look for ways to 

reduce the impact of these limitations.  Enabling these scenarios 

will require both new designs for visualization and system design. 

1.1 Interaction Assists Exploratory Visualization 

Several projects have attempted to distinguish between 

exploratory visualization and presentation (e.g. [22]). In 

presentations, the audience and presenters expect precision: the 

visualization should be based on the best data possible. 

In contrast, exploratory visualization can be understood as 

iterating through a series of visualizations rapidly enough to make 

a decision based on data. In many cases, knowing a correct 

answer within some percentage may be sufficient for decision-

making. Consider a sales manager examining recent sales tables: 

learning that her branch sold approximately five times as many 

widgets as sprockets will allow her to dive further into the widgets 

category without worrying much about sprockets. 

We might draw an analogy to a computer-graphics artist 

looking at a rapidly-generated wireframe, rather than a full render 

of an animated scene. The wireframe can be generated rapidly, 

and may give the artist enough information to move props or 

actors around.  

Approximate results can help make decisions about datasets 

rapidly. In the data cleaning phase, an analyst can discover that 

some messy items swamp the dataset. In exploration, a quick 

overview can help an analyst realize they have issued the wrong 

query—and, once they have the right one, quick overviews can 

help decide which region of the data is worthwhile focusing on. In 

some cases, approximate results might allow a time-critical 

decision to be made faster without having to wait for a long 

processing job. 

Today, analysts will sometimes separate a tractable subset of 

their database, and work off of that subset, creating data cleaning 

scripts and preliminary graphs. They then run those same scripts 

on the full database. The analyst must judge how large a sample 

of data to collect, and must decide whether the sample is 

representative. In few cases does the analyst expect to make 

decisions based on a sample.  Incremental processing allows a 

user to work off of increasingly-large samples, and thus 

increasingly-certain results. 

In general, we wish to visualize data rapidly enough to 

encourage the user to be able to string tasks together interactively. 

Card et al suggest a timing model which describes how long a 

user might stay on task [2] (and later work on timing by Seow, 

[25]). Responses less than 0.1 seconds are perceived as nearly 

instantaneous; anything less than one second is understood as an 

prompt response. On the other hand, if a system takes more than 

ten seconds to reply to a query, the user will perceive the 

questioning and answering as separate tasks. 

1.2 Big Data: Hard for Databases and Visualizations 

That sort of timing is an ambitious goal. Any compute job that 

touches large data—in the terabyte range and up—requires a 

substantial amount of time. Disks are limited in reading speed; 

networks are limited in throughput.  In distributed networks, such 

as Hadoop, Amazon EC2, or Microsoft’s Azure, there can be 
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multiple machines may also saturate bandwidth. While increased 

bandwidth, parallelism, or clever storage schemes may 

temporarily achieve interactive rates against large datasets, ever-

larger datasets keep pace with innovations. 

In the visualization community, large data has also been a 

challenge. Information visualization research was forced to face 

issues of scale over a decade ago, when datasets grew larger than 

the number of pixels on screen: a threshold crossed around a 

million items, or a few megabytes of data. Pioneering work by 

Shneiderman [26] and others argued that it is critical to 

summarize data, either by ordering it hierarchically, or allowing 

users to filter and zoom deeper into the dataset.  

These techniques are limited by data constraints: a treemap may 

be a good overview technique, but requires that each node have an 

accurate count of the sizes of its children. Depending on the size 

and storage of a dataset, that can be a very expensive 

computation. In this paper, we identify classes of visualization 

techniques that work well when our ability to collect data rapidly 

is limited. 

1.3 Approximate Visualizations of Incremental Data 

We can use incremental data sampling to generate approximate 

answers for many types of queries. While it is possible to generate 

a visualization based on a sample of a dataset, we wish to allow 

users to interactively choose to trade time for accuracy. For 

appropriately-formed queries, many queries should be able to 

produce an approximate answer rapidly; as the data request 

progresses, the user can get a more detailed, and more accurate, 

response.  The user can choose to interrupt at any moment, when 

they have enough information to act on the data, create a new 

query, or decide to wait for more detailed data.  

 

 

Figure 1. Hypothetical comparison on quality of answers for a 

system computing incremental results. While the traditional, 

fixed system generates a complete answer sooner, the 

incremental system has fairly tight bounds much earlier. 

Figure 1 illustrates a (hypothetical) accuracy-vs-time trade-off 

curve. The Y axis represents the degree of accuracy of the query 

response, expressed as a fraction of the true value. In the 

incremental case, the system produces useful results almost 

immediately (solid line); at a later time, the full query (dotted line) 

returns. At that moment, the full query is more accurate (but only 

slightly) than the incremental partial results had been.  

These techniques apply to data and queries where a sample can 

be visualized usefully, such as aggregate visualizations. In 

contrast, visualizations that emphasize individual datapoints will 

be much less successful. 

Two fields of research converge to make this possible. On the 

one hand, the database community has carried on a tradition of 

research looking at incremental and online data querying 

techniques, examining systems and situations where it works well. 

These techniques have not yet become mainstream. On the other 

hand, the data visualization community has wrestled with 

concepts of collecting and visualizing data that is subject to 

‘uncertainty’; however, the field seems to have had limited 

success in finding useful examples of uncertain data. This paper 

unifies these literatures, suggesting interactions between them. 

Aspects of this have been mentioned before. The CONTROL 

project [9][11] is a major inspiration for the area of online, 

interactive data analysis. The CONTROL project is motivated in 

part by allowing users to interactively generate visualizations. 

However, the authors have not presented appropriate 

visualizations that would go with their interactive database. 

Olston and Mackinlay [20] mention incremental sampling as a 

potential motivator for their visualization of uncertainty, and refer 

back to the CONTROL project, but provide little detail on how 

those techniques might be carried out in practice. In this paper, we 

attempt to overview both literatures, in an attempt to describe the 

costs and benefits of incremental visualizations. 

We propose a workflow as in Table 2: the user begins a 

computation process that iteratively updates a visualization with 

ever better estimates and confidence bounds. 

This paper intends to motivate incremental analysis from both 

the data side and the visualization side, and argues that the two 

should be brought together. First, the paper contributes as a 

review of techniques for handling large data, including pre-

aggregation and online querying; it discusses statistical bounds 

that help describe the range of the data, and discusses the 

implications for arranging data in disks and networks. Second, it 

reviews the visualization literature on uncertainty and on 

aggregation, and links the notion of uncertainty to the 

probabilistic results produced in the previous section. Last, it 

introduces a prototype system, “TeraSim,” that generates iterative, 

convergent data for visualization. While TeraSim is still in 

construction, its design illustrates how a pipeline from data 

through visualization can be brought together. 

 

Table 2. Workflow for incremental visualization system. SQL 

syntax is for illustration only.  

Incremental Visualization System 

1. Large Data is stored on disk or distributed system 

2. User selects a dataset within their visualization 

system; system issues aggregate query 
SELECT APPROXIMATE CATEGORY, SUM(*)  
FROM Table T 
WHERE Condition=C 
GROUP BY CATEGORY 

3. Database begins to produce histograms of 

(CATEGORY, SUM, CONFIDENCE BOUNDS).  

4. Visualization updates to reflect categories and 

values from the database. 

5. If the user chooses to interrupt, then the 

visualization stops; otherwise, repeat step 3 with 

more detail. 

6. User issues new query, or waits for computation to 

complete. 

2 DEALING WITH LARGE DATA 

The notion of “large” data changes with computer technologies. 

Papers in the VLDB (“Very Large Databases”) conference of 

1975 referred to tables of millions of entries [27]; current work 



looks at analyses of web-scale datasets—a handful of orders of 

magnitude larger. During the intervening 35 years, the use of 

multiple parallel data stores and networked databases has stayed 

constant. Separating data onto multiple disks and network means 

that any query against the data will be costly. 

2.1 Pre-Aggregation is Fast, but Inflexible 

This problem has been recognized for a very long time. OLAP [3] 

is a technology that partially pre-aggregates data into ‘cubes’, 

stored in a ‘data warehouse’. The cubes are chosen to expose 

major facets of the data, while reducing the number of individual 

elements. For example, a retailer might store individual sales 

transactions in a transactional database; the warehouse might then 

store all transactions aggregated by product, sales date, and retail 

outlet. This warehouse would be very quick to reply to queries 

like “how many widgets were sold on Wednesday?” However, it 

would be unable to address queries that require dimensions not 

stored in the cube, such as “how many customers from ZIP code 

98052 purchased a widget?” While an offline data warehouse is a 

fast way to handle data, we are particularly concerned that the 

user be able to formulate queries based on dimensions that were 

not previously expected. 

As an example from the Information Visualization field, the 

Hotmap [8] project visualized where users downloaded tiles from 

Microsoft’s Bing Maps. While the datasource started with raw 

HTTP logs, they were pre-processed offline into a fixed data 

structure to allow for quick retrieval. Hotmap needed to know the 

number of hits at each latitude and longitude, as a result, location 

was used as a primary key. While this new format allowed for 

interactive navigation speeds, the pre-computation phase was very 

long (eliminating the possibility of looking at daily changes) and 

allowed only a certain set of queries. For example, the system 

could address queries about the date of the web hit, but not the IP 

address of the requestor (a field that was not indexed). This pre-

aggregation limited the analyses that could be done with the 

system without extensive manual labor and slow computation. 

 

 

Figure 2. The Hotmap project. Brighter spots have had more 

people look at them.  

Some issues with speed can be alleviated by carefully planning 

out a sequence of queries.  Chan et al [4] show a system which 

keeps ahead of viewers by adaptively prefetching data near where 

they currently are. This means that users will always have the 

illusion of available data. This solution, like other forms of pre-

aggregation, works best when the user’s options are limited: if the 

user can choose from a very broad selection of choices, then the 

amount of data to be prefetched will be similarly large. 

2.2 Parallel Computation for Big Data 

One way to handle very large datasets is to parallelize storage and 

computation. Rather than storing all the data on a single 

machine—limited by the one machine’s memory, disk bandwidth, 

and computation speed—large datasets can be spread across a 

distributed database. In the last few years, the MapReduce [5] 

concept has become a popular way to store large data in parallel. 

Distributed machines each store a portion of the dataset, and a 

query is run against each distributed machine separately. Each 

machine runs the query locally (“map”), and then an aggregation 

site brings together all of these results into a single result set 

(“reduce”). One major advantage of this scheme is that data size is 

no longer a problem: each machine handles a constant amount of 

data. 

Several query languages have been written specifically against 

MapReduce-type clusters. Sawzall [21] is a specialized language 

for MapReduce, which allows users to precisely express each step 

as simple syntax. DryadLINQ [34] extends C#’s LINQ 

(“Language INtegrated Query”) syntax to allow users to write 

queries that have a parallel component; the system then 

propagates the query across multiple machines in parallel. 

DryadLINQ also computes a full directed graph of maps and 

reduces, allowing multiple-step mappings and reductions.  

Dremel [18] is also designed as a rapid query language against 

large databases; while other systems are agnostic to underlying 

data structures, Dremel requires that the data table be formatted as 

a particular column-oriented database; while the pre-processing 

for this column-orientation can be slow, the results allow for fast 

queries.  

These parallel systems make linear queries fast, limited only by 

the read speed of their system. However, contemporary 

implementations do not have mechanisms for reporting 

incremental results: they touch every row before returning 

complete results. Of course, any of these systems might be 

modified to allow progressive queries: recently, MapReduce 

Online [6] has offered online incremental queries against Hadoop 

architectures; it allows increasingly-accurate results as further 

time runs.  

In general, this paper addresses precisely this issue: what would 

the cost, and the value, be of adding progressive callbacks to 

MapReduce-type systems and large data queries? In the next 

section, we look first at approximate queries against large 

datasets. 

3 APPROXIMATE QUERIES FOR LARGE DATASETS 

As we have noted above, serial scans of large datasets look at 

individual records very rapidly. Rather than waiting until the scan 

has touched the entire database, it might be possible to return 

partial results. If that partial result is based on a fair random 

sample of the dataset, it will have statistical bounds and properties 

that can be used to approximate the remainder of the dataset. 

Unfortunately, this is frequently not the case: data often comes 

ordered on disk. In the next sections, we will discuss the 

operations that are possible on such a sample, the challenges of 

getting data into randomized order, and the sorts of statistical 

statements that we can make about these aggregations. 

3.1 Operations on Samples 

Working from a sample of data implies that we can only carry out 

some operations: we can use the limited sample to extrapolate 



what the rest of the database looks like. We can then predict 

bounds on the remainder of the dataset, and visualize these 

bounds. 

3.1.1 Using Aggregate Queries 

Aggregate queries are of particular interest precisely because they 

can reasonably be predicted from a limited subset of a database. 

Computing the sum, count, and average are very common 

aggregate queries, and can be computed both easily and precisely 

online. For sum, count, and average queries against a random 

sample, the size of the confidence interval inversely proportional 

to the square root of the size of the sample, and proportional to the 

variance of the dataset. Thus, as the sample grows, the confidence 

interval decreases, allowing the user to see values converging.  

These queries can be applied well to a variety of different types 

of visualizations.  A histogram, for example, can be understood as 

a count query, separated by categories. Many popular 

visualizations are one- or two-dimensional histograms: faceted 

browsers, such as FacetMap [29], are simply histograms of 

categories across different dimensions. Hotmap, discussed above, 

is a two-dimensional histogram across a fairly large number of 

possible buckets. While both of these projects showed precise 

results, they would have worked well as approximations. 

Some queries are harder. Percentile and median queries can be 

estimated incrementally, but with diminished precision and ill-

defined bounds.  Operations like finding the largest or smallest 

values, or top-N lists, requires looking at every point, and so 

cannot be reasonably approximated with samples.  

We can also approximate some queries with others. While 

finding a particular outlier is difficult, finding values that fall 

outside a percentile range is entirely plausible.  

3.1.2 Appropriate Data Characteristics 

Beyond the type of query, the type of data matters, too. It is 

desirable to have a finite number of categories: many of the 

techniques discussed here cannot apply to histograms that are 

wider than memory. In the example looking at corporate sales, a 

histogram of product by number of people who bought it would 

be easy to generate. On the other hand, a histogram of street 

address by number of purchases made from it may well 

overwhelm the histogram. 

As the confidence level is a function of the variance of the data, 

the distribution of the data columns also matter: the bounds of a 

highly skewed distribution will converge much more slowly than 

a more balanced distribution. 

3.2 Randomly Selecting from Databases 

The question of efficient random sampling from database files is 

well-known ([19] has a survey of techniques from 1990). It is a 

slow process to individually read random rows of a database; the 

database system is optimized for reading continuous chunks of 

memory. The quality of the random values can be traded for 

speed, however: taking random pages from a disk table introduces 

some bias, but is much faster than taking random rows. A second 

trade-off is whether to sample with or without replacement. 

Sampling with replacement can be statistically desirable; 

however, sampling without replacement ensures that the process 

will eventually cover all rows and eventually converge at the true 

answer. (For small numbers of rows—a few percent of the 

database—sampling with and without replacement are nearly 

identical.) 

Random sampling is implemented in major commercial 

databases: the TABLESAMPLE keyword is now available in DB2 

[10], SQL Server, and Oracle. Each of these allows a user to 

specify a fraction of the result set to return. This random selection 

can then be joined with other tables; the query could be repeated 

to get a broader random sample. The TABLESAMPLE function 

takes a random selection of pages in the database. 

It might be possible to get rapid, partial answers by pre-

computing a large random sample of the database, especially in 

cases where a full OLAP cube would still be too big (or too slow) 

to be practicable. Recent work [14] explores creating and 

maintaining these random samples.  

3.3 Joining Sampled Data 

The join operation is critical to sophisticated data analysis. To 

understand the importance of the ‘join’ operation, recall the 

marketing scenario from before. To examine customers who 

returned for a second visit, or those who bought a t-shirt in the 

same visit as a pair of pants, they will need to construct a join 

statement: two different tables will need to be linked together. 

Join operations are also needed to fill in metadata about columns, 

navigate graph data structures, and link together different sources 

of data. 

While joining is a fundamental relational database operation, 

joining can be difficult on both Map-Reduce and in sampled 

datasets. On parallel Map-Reduce systems, join operations often 

require substantial network bandwidth and computation to first 

hash, then join entries together.  

Joins cut substantially down on the size of samples, too: a 

random 10% sample of two datasets to be joined together has just 

a 1% chance of finding a row that matches between both datasets. 

A system will need to keep intermediate join results in memory, 

looking for matches—and data collection will be especially slow 

if one of the joined attributes is highly filtered.  

Much of the research from the CONTROL project tried to 

establish ways to handle joining rapidly. One CONTROL 

technique was the Hash Ripple Join [9]. In a typical join, a 

database looks at all of the index values of one dimension into 

memory (perhaps in portions), and then matches them against the 

other dimension. The hash ripple join, in contrast, alternately 

reads sets of rows from each dimension, incrementally building a 

larger pool of rows that might match each other. The Ripple Join 

suffers when it runs out of memory, however; the Scalable Hash 

Ripple Join [17] addresses issues with both memory usage by 

falling back to disk storage, and adds a capability to join across a 

distributed system.  

The Sort-Merge-Shrink Join [13] is an alternate strategy that, 

similarly, works when the set of keys is larger than memory; in 

addition, the Sort-Merge-Shrink Join offers robust statistical 

estimates of both progress and running totals. However, it requires 

the data on disk to be arranged in random order. 

These methods might potentially be parallelized or run on a 

distributed system. This line of research suggests that incremental 

queries against joined data may be possible, and can be made both 

fast and memory efficient.  

3.4 Convergent Bounds on Values 

An estimate is of limited utility if it does not allow us to also 

understand how good an estimate it is. We can use confidence 

bounds to control the visualization. Both the Ripple Join [9] and 

Sort-Merge-Shrink [13] papers provide discussions of their 

statistical estimators. These estimators are complex, as they need 

to account for the statistical properties of the JOIN operation from 

two different, dependent samples.  

The notion of a ‘central limit theorem’ states that the 

distribution of the mean of a sample of data is normally 

distributed, with a variance proportional to the variance of the 



dataset. This means that the mean of the full dataset can be 

estimated from the mean of the sample.  In general, a variety of 

different central limit bounds can be applied straightforwardly to 

these sampling problems; different properties of the data may 

allow tighter bounds, depending on how the underlying data is 

distributed. We may therefore expect that an approximate, 

incremental operation should return both a value, and a 

probability distribution function (such as 95% confidence 

bounds). 

3.5 Sketch Estimators 

A different approach to trading speed for accuracy is through 

database “sketch estimators.” Database sketches attempt to rapidly 

aggregate data by keeping summaries that are smaller than the 

number of items. Sketches maintain probabilistic aggregations of 

values, which can be queried rapidly. Ruso and Dobra [23] 

compares several different sketch estimators, and provides their 

statistical properties, including evaluating the quality of the 

estimators that they produce. 

4 VISUALIZING AGGREGATE AND INCOMPLETE DATA 

We have largely discussed the techniques that might be used to 

power and drive an interactive aggregate visualization system. In 

this section, we turn from examining databases to visualization 

research. There has largely been little work linking approximate 

database queries with uncertainty visualization, although the two 

seem like a logical obvious fit. Olston and Mackinlay are a 

dramatic exception: their work on bounded uncertainty explicitly 

mentions incremental data updates as one likely scenario [20]. 

However, their work focuses specifically on visualization 

techniques, and does not discuss database sampling issues. In this 

section, we discuss Infovis research on uncertainty, focusing in 

particular on visualizations that are likely to be appropriate for 

approximate databases. 

4.1 Types of Visualizations 

Only certain visualization techniques would be appropriate to 

incremental visualizations. In this section, we discuss several 

visualizations that can or do not apply to large data visualizations.  

In Shneiderman’s discussion of “squeezing a billion points into a 

million pixels” [26], he distinguishes between “one point per 

pixel” techniques, which will require zooming, and aggregate 

visualizations. A scatterplot is an example of the former: a 

scatterplot of a billion points must plot (and overplot) a billion 

pixels.  

4.1.1 Aggregate Visualizations 

In contrast, aggregate visualizations count elements. Those same 

billion points might be drawn as a two-dimensional histogram, 

showing the number of points that occur within each region. This 

latter visualization can be imprecise without losing its meaning.  

A treemap is similarly a sort of histogram, with each cell as a 

counted group-by operation.  

Elmqvist and Fekete [7] suggest a broad spectrum of ideas for 

aggregate visualizations. While the paper refers to these as 

“hierarchical” visualization, their technique is to ensure that 

individual data points are aggregated together. They suggest 

visualizations that can be aggregated by sum, average, median, 

and other statistical measures. They suggest using hierarchical 

clustering as a base techniques to modify well-known 

visualizations (such as scatter plots, parallel coordinates, and star 

glyphs) into aggregate visualizations by summarizing parts of 

graphs. Many of their techniques are appropriate for the aggregate 

visualizations we discuss here, although the navigation techniques 

they discuss to zoom in or peel away layers of data would, in all 

likelihood, trigger new queries. 

4.1.2 Tag Clouds 

Tag Clouds are a common visualization that does not hinge on 

precision [32]. As there are only so many possible sizes for text, a 

small uncertainty range makes little difference to the tags. It may 

be possible to render the most frequent words in a visualization 

using the constraints suggested by ManiWordle [15]. (As Kosara 

shows, however, adding blur to text may render it unreadable, 

rather than indicating—as one might hope—that the value 

associated with the word is uncertain [16]. Other types of 

annotations might help indicate uncertainty, however.) 

4.2 Uncertainty Visualization 

In addition to portraying the estimated value, it is desirable for the 

visualization to show the range of possible values or estimates. As 

noted above, there seems to be a natural match between some 

forms of ‘uncertainty visualization’ and the approximate values 

with ranges that these estimation techniques produce. The term 

‘uncertainty’ has taken on many meanings within the field of 

information visualization; authors have used it to refer not only to 

uncertain data values, but to the quality, provenance, and even the 

structure of data (summarized in  [28]). A broad typology of both 

sources and types of uncertainty in geospatial data [31] provides 

additional detail. Zuk and Carpendale [35] analyze several 

uncertainty visualizations using frameworks established by Bertin, 

Tufte, and Ware, finding that standard rules of visualization were 

only sparingly used within uncertainty visualizations, 

compromising reader’s abilities to understand the visualization. 

4.2.1 Statistical and Quantitative Uncertainty 

Of this broad family of uncertainty, we are interested solely in 

quantitative uncertainty: places where we know a numerical 

result, possibly within a degree of precision (that is, statistical 

uncertainty). In [30], the authors produce a model for maintaining 

uncertainty information in a spreadsheet. They introduce three 

forms of uncertainty: estimates which are known to be inaccurate 

(but not by how much); intervals, in which a value is known to 

fall into a range; and probabilities, in which a value can be 

expressed as a probability curve. These allow them to create 

approximate line graphs, using translucency for probability, 

dotted lines for estimation, and filled regions for ranges (Figure 3, 

bottom). They also offer a 3D chart, which uses translucency at 

each point to represent probability. 

Similarly, Olston and Mackinlay [20] render bounded and 

statistical uncertainty. They use error bars to indicate statistical 

ranges (as error bars indicate a ‘likely region and estimator’); they 

render bounded (such as 4.5 +/- 3) as “graphical fuzz”, greyed 

regions. Their techniques work well for scatterplots and line 

charts; they are forced to compromise for stacked-bar charts and 

pie charts (Figure 3, top-left).  

4.2.2 Challenges in Quantitative Visualization of 
Uncertainty 

Several user studies of uncertainty visualization have suggested 

that there are real challenges to making uncertain data easily 

readable to users. Kosara [16] argues that while blur might help 

cue depth, it is difficult to compare different amounts of blur. 

Wittenbrink et al test several different glyphs that can be used 

to highlight uncertainty in vector fields [33]. Their research, 

which examines glyphs that show uncertainty in both angle and 

length, evaluates tradeoffs not raised by others. For example, 



when a vector has some uncertainty in both magnitude and angle, 

many natural encodings would be drawn across a greater area, 

suggesting that the values were bigger or more important, rather 

than just more uncertain. Figure 3, top-middle, shows one of their 

uncertainty-encoded charts. 

Sanyal et al [24] also study bounded uncertainty, evaluating 

different techniques for visualizing uncertain values. They 

generate uncertain data, and find that error bars provide 

disappointing results while other mappings (including glyph color 

and glyph size), while still having high error rates, are somewhat 

more accurate. Figure 3, top right, has the error bars condition 

from their study. 

4.2.3 Changing Values 

As the compute process progresses, it should repeatedly update 

the visualization with tighter bounds and better estimates. A user 

should expect that when the process converges, it will deliver a 

visualization with no uncertainty at all. These constraints require 

that the uncertain region is drawn in ways that are consistent with 

the final visualization, so they can be removed. Olston & 

Mackinlay’s implementation, for example, succeeds at this: their 

error bars and fuzzy regions would shrink as the computation 

progresses. 

In order to smooth the process of transition, an animation 

engine (such as DynaVis [12]) could enable smooth transitions 

between states as the values update. The designer might also want 

to allow the user to track how the visualization is changing over 

time: past research has shown [22] that animation can be a poor 

way to allow users to see differences. For example, the user may 

wish to track the rate at which regions are converging, or see 

whether the mean estimate is staying within its estimators. 

Visualization techniques like showing tracks [22] or allowing old 

versions of the value to linger on screen (as in Phosphor [1] can 

allow a user to track changing values. 

4.3 Conclusion: Uncertainty Visualization 

The techniques discussed above have a number of properties in 

common: they show ranges of information, mapped as an extra 

dimension of the visualization: error bars, fuzz zones, and 

uncertainty-encoded glyphs take up additional space on the 

screen. In other work, researchers have looked at mapping color to 

certainty, allowing the visualization to maintain its standard space 

requirements. For the incremental visualizations we look at here, 

we may find that the uncertainty is not to be measured per data 

item, but rather in the visualization as a whole—that is, the whole 

dataset might be described with a given level of uncertainty, 

which might open up new alternative visualization types.  

5 IMPLEMENTING A PROTOTYPE SIMULATOR SYSTEM 

This paper has so far discussed existing work. In this section, we 

discuss our system in progress, known as TeraSim, which allows 

us to simulate a large cloud-based data store. We have chosen to 

build this as a simulation, rather than as a full cloud-based system, 

in order to control variables such as latency, amount of data that 

can be read at once, and even network topology. TeraSim 

simulates a large-scale back-end server which stores a large set of 

data, and a front-end computation hub. The back-end server can 

be configured with the amount of data it controls, its disk read 

 

 

 
Figure 3. Techniques for visualizing quantitative uncertainty. (Top Left) Error bars for scatter plot and bar chart; ‘ambiguation’ areas for pie chart 
and stacked bar chart [20]. (Top Middle). Vector glyphs showing uncertainty in both length and angle. The area of the vector arrow shows 
uncertainty; a certain vector is a thin line [33]. (Top Right) A line chart showing error bars to indicate uncertainty; one of the techniques attempted 
in [24]. (Bottom) Showing approximate uncertainty, range uncertainty, and a probability distribution function across certainty on a line chart [30]. 



speed (expressed as number of rows per second), and its 

communication latency.  

We are using TeraSim to explore a variety of different 

visualization techniques over this data. Our goals are to explore 

possible visualizations of confidence levels and approximate 

results; to better understand the database constraints needed to 

support them; and to explore how users interact with changing 

data. 

In reality, TeraSim is implemented as a single application 

running over a single commodity database. The database contains 

pre-sampled data, with a few millions of rows. The results that it 

provides can be scaled up (simply by repeating values) to simulate 

billions or more of rows. The front-end can issue queries to the 

database, which returns appropriate statistical properties: usually 

means, counts, and standard deviations. The front-end then 

combines these counts to generate its estimates and error bounds, 

and presents them to the user. The front-end iterates its queries to 

the back end, getting back increasingly-large estimates. 

TeraSim is designed to handle multi-dimensional histogram 

queries of the form  

 

SELECT <G1, G2>, MEAN/SUM/COUNT (*) 
FROM <TABLE> 
WHERE <Condition> 
GROUP BY <G1, G2> 

 

where the condition is limited only on columns that are in the 

table and the group can take one or many columns. TeraSim 

cannot, however, handle join operations. 

We are in the process of extending the back-end so that the 

system can simulate a cloud of computers, rather than a single 

machine. At that point, each back-end machine will pass back not 

its own confidence bounds, but rather components that will allow 

the front-end to compute the confidence bounds. For example, the 

SUM estimator is based on the sum of the entire back-end sample, 

multiplied out to match the size of the full dataset. Each back-end 

replies with the sum of the back-end sample and their fraction of 

the size; the system combines these across all of the machines to 

generate a single estimator. Similarly, the error bounds are 

computed based on the standard deviation of the sample; each 

simulated machine will compute a partial result, and the front-end 

will combine them. 

5.1 Passing Incremental Data 

In our current implementation, TeraSim passes entire histograms 

at a time. Each server computes its histogram and passes it to the 

front-end; the front-end, in turn, replaces its current histogram and 

re-renders. As we experiment with more (simulated) back-end 

servers and more data, we are beginning to encounter times when 

passing the entire histogram for a dataset gets large (such as when 

we group on vocabulary within a document.) We are designing a 

system for with passing incremental histograms: tables that 

represent only the difference from the previous data. 

While TeraSim is in early stages yet, we are finding it a robust 

platform to explore several different types of data, and to motivate 

further research on building incremental and scalable back-ends. 

6 CONCLUSION 

In this paper, we have contributed four interrelated ideas:  
First, we have argued for linking incremental data querying 

techniques to visualizations. We have shown applications and 

uses where rapid, less-accurate results are more valuable than 

slow, more-accurate results. 

Second, we have highlighted the major issues in the data 

sampling literature, including the difficulty of getting a good 

random sample, and the challenges involved in join queries. 

Third, we have discussed some visualization tools that help 

indicate how the visualization field could connect the uncertainty-

laden data produced by these approximate queries. 

Last, we have discussed TeraSim, a testbed for visualizing real-

time results from dynamic queries across large data. 
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