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ABSTRACT

We consider a crowdsourcing database system that may eleans
populate, or filter its data by using human workers. Justdiken-
ventional DB system, such a crowdsourcing DB system reguire
data manipulation functions such as select, aggregateimmax,
average, and so on, except that now it must rely on human oper-
ators (that for example compare two objects) with very défe
latency, cost and accuracy characteristics. In this papefocus

on one such functioomaximumthat finds the highest ranked object
or tuple in a set. In particularm we study two problems: gigeset

of votes (pairwise comparisons among objects), how do wecsel
the maximum? And how do we improve our estimate by requesting
additional votes? We show that in a crowdsourcing DB system,
optimal solution to both problems NP-Hard. We then provide
heuristic functions to select the maximum given evidencel, @
select additional votes. We experimentally evaluate onctions

to highlight their strengths and weaknesses.
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zon's Mechanical Turk (mturk.com) can be used by the datbas
system to find human workers and perform the tasks, although
there are many other companies now offering services irsgfase
(CrowdFlower crowdflower.com, uTest utest.com, Microtask
crotask.com, Tagasauris tagasauris.com).

Just like a conventional database system, a crowdsoureiadpase
system will need to perform data processing functions liects
and aggregates, except that now these functions may inirtke
acting with humans. For example, to add a field “average nratie
ing” to movie tuples involves an aggregate over the usertsifbe-
lecting “horror movies” may involve asking humans what nesvi
are “horror movies.” The underlying operations (e.g., askuman
if a given movie is a “horror movie” or ask a human which of two
cameras is best) have very different latency, cost and acguwhar-
acteristics than in a traditional database system. Thus)eged to
develop effective strategies for performing such fundaaletata
processing functions.

In particular, in this paper we focus on tiax (Maximum) func-
tion: The database has a set of objects (e.g., maps, photographs,
Facebook profiles), where conceptually each object hastansit

A crowdsourcing database system uses people to perform data‘quality” measure (e.g., how useful is a map for a specific anm

cleansing, collection or filtering tasks that are difficat tomput-

ers to perform. For example, suppose that a large colleofioraps

is being loaded into the database, and we would like to adal dat
fields to identify “features” of interest such as washed @atds,
dangerous curves, intersections with dirt roads or traciton the
maps, accidents, possible shelter, and so on. Such feateresry

hard for image analysis software to identify, but could benidfied
relatively easily by people who live in the area, who visitieel area
recently, or who are shown satellite images of the area. fvdfo
sourcing database system issues tasks to people (e.geatages

on this map, compare the quality of one map as compared to an-
other), collects the answers, and verifies the answers (®B.@sk-

ing other people to check identified features). We focus owdr
sourcing systems where people are paid for their work, afghdn
others they volunteer their work (e.g., in the ChristmasiBiount,
http://birds.audubon.org/christmas-bird-count, voaars identify
birds across the US), while in other systems the tasks are pre
sented as games that people do for fun (e.g., gwap.com). Ama-
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itarian mission, how well does a photo describe a given veatd,
how likely is it that a given Facebook profile is the actualfjiecof
Lady Gaga). Of the set of objects, we want to find the one wigh th
largest quality measure. While there are many possiblenyide
types of human operators, in this paper we focus on a paimyse
erator: a human is asked to compare two objects and retuertsth
object he thinks is of higher quality. We call this type of pase
comparison aote

If we ask two humans to compare the same pair of objects they
may give us different answers, either because they makdakess
or because their notion of quality is subjective. Either wéne
crowdsourcing algorithm may need to submit the same votaie m
tiple humans to increase the likelihood that its final ansiweor-
rect (i.e. that the reported max is indeed the object withhighest
quality measure). Of course, executing more votes inceetise
cost of the algorithm, either in running time and/or in mamgt
compensation given to the humans for their work.

There are two types of algorithms for the Max Problem: struc-
tured and unstructured. With a structured approach, a aegait-
tern of votes is set up in advance, as in a tournament. Forggam
if we have 8 objects to consider, we can first compare 1 to 2, 3 to
4,5to 6 and 7 to 8. After we get all results, we compare the 1-2
winner to the 3-4 winner and the 5-6 winner to the 7-8 winnar. |
the third stage, we compare the two winners to obtain theadiver
winner, which is declared the max. If we are concerned abotit v
ing errors, we can repeat each vote an odd number of timessand u
the consensus result. For instance, three humans can littaske



the 1-2 comparison, and the winner of this comparison is tjeod
that wins in 2 or 3 of the individual votes.

While structured approaches are very effective in pretietan-
vironments (such as in a sports tournament), they are mudieha
to implement in a crowdsourcing database system, where imsima
may simply not respond to a vote, or may take an unacceptabgy |
time to respond. In our 8-object example, for instance raft&ing
for the first 4 votes, and waiting for 10 minutes, we may hag on
the answers to the 1-2 and 5-6 comparisons. We could thessue-i
the 3-4 and 7-8 comparisons and just wait, but perhaps wddhou
also try comparing the winner of 1-2 with the winner of 5-6 (ot
was not in our original plan).

The point is that even if we start with a structured plan in dnin
because of incomplete votes we will likely be faced with an un
structured scenario: some subset of the possible votesduame
pleted (some with varying numbers of repetitions), and westia
answer one or both of the following questions:

e Judgment Problemwhat is our current best estimate for the
overall max winner?

o Next Votes Problenif we want to invoke more votes, which
are the most effective ones to invoke, given the currentstan
ing of results?

In this paper we focus precisely on these two problems, iman u
structured setting that is much more likely to occur in a aisaurc-
ing database system. Both of these problems are quite nhaitp

because there may be many objects in the database, and decaus

there are many possible votes to invoke. An additional ehak
is contradictory evidence. For instance, say we have thogts,
and one vote told us 1 was better than 2, another vote toldais th
2 was better than 3, and a third one told us that 3 was bettet and
What is the most likely max in a scenario like this one wherie ev
dence is in conflict? Should we just ignore “conflicting” esicte,
but how exactly do we do this? Yet another challenge is tHedéc
evidence for some objects. For example, say our evidendeis t
1 is better than objects 2, 3 and 4. However, there are two addi
tional objects, 5 and 6, for which there is no data. If we canlke
one more vote, should we compare the current favorite, oldjec
against another object to verify that it is the max, or shomédat
least try comparing 5 and 6, for which we have no information?

The Judgment Problem draws its roots from the histopeaded
comparisongproblem, wherein the goal is to find the best rank-
ing of objects when noisy evidence is provided [20, 29, 12je T
problem is also related to thA&@inner Determinatiomproblem in the
economic and social choice literature [6], wherein the gotd find
the best object via soting rule either by finding a “good” rank-
ing of objects and then returning the best object(s) in thaking,
or by scoring each object and returning the best scoringct(sje
As we will see in Section 2, our solution to the Judgment Ryobl
differs from both of these approaches. As far as we know, nm€o
terpart of the Next Votes problem exists in the literature $Mrvey
related work in more detail in Section 4.

In summary, our contributions are as follows:

e \We formalize the Max Problem for a crowdsourcing database
system, with its two subproblems, the Judgment and the Next
\otes problems.

We propose a Maximum Likelihood (ML) formulation of
the Judgment Problem, which finds the object that is prob-
abilistically the most likely to be the maximum. We show
that computing the Maximum Likelihood objectNd>-Hard,
while computation of the probabilities involved#$-Hard.

To the best of our knowledge, our ML formulation is the first
formal definition and analysis of the Judgment Problem.

e \We propose and evaluate four different heuristics for tlegdu

ment Problem, some of which are adapted from solutions for
sorting with noisy comparisons. For small problem settings
we compare the heuristic solutions to those provided by ML.
When there is only a small number of votes available, we
show that one of our methods, a novel algorithm based on
PageRank, is the best heuristic.

We provide the first formal definition of the Next Votes Prob-
lem, and again, propose a formulation based on ML. We
show that selecting optimal additional votesliB-Hard, while
computation of the probabilities involved#¥-Hard.

We propose four novel heuristics for the Next Votes Prob-
lem. We experimentally evaluate the heuristics, and when
feasible, compare them to the ML formulation.

2. JUDGMENT PROBLEM
2.1 Problem Setup

Objects and Permutations: We are given a seb of n objects
{01, ..., 0o}, where each objeef; is associated with a lateqtiality

¢i, With no two ¢’s being the same. & > ¢;, we say thab;

is greaterthano;. Letw denote a permutation function, e.g., a
bijection from N to N, where N = {1,...,n}. We user(i) to
denote theank, or index, of objec; in permutationr, andr " (i)

to denote the object index of thth position in permutationr. If
(1) < 7(j), we say thav; is rankechigherthano, in permutation
. Since no two objects have the same quality, there exisisea
permutationr™ such that for any paifi, j), if 7* (i) < 7*(4), then
Cre(i) > Cx(;)- Note that throughout this paper, we use the terms
permutationandrankinginterchangeably.

Voting: We wish to develop amlgorithm to find the maximum
(greatest) object in s, i.e., to findz*~*(1). The only type of op-
eration or information available to an algorithm is a pagewote

in a vote, a human worker is shown two objeetsand o;, and
is asked to indicate the greater object. We assume that ak-wo
ers vote correctly with probability (0.5 < p < 1), wherep is a
quantity indicating average worker accuracy. We also assuim
unaffected by worker identities, object values, or workehdvior.
In other words, each vote can be viewed as a independent @&rno
trial with success probability. Note that in general the valyeis
not available to the algorithm, but we may use it for evahuti
the algorithm. However, for reference we do study two altponis
wherep is known.

Goals: No matter how the algorithm decides to issue vote requests
to workers, at the end it must select what it thinks is the manxn
object based on the evidence, i.e., based on the votes deahple
so far. We start by focusing on thisidgment Problemwhich we
define as follows:

PROBLEM1 (JUDGMENT). GivenW, predict the maxi-
mum object ir0, 7*~*(1).

In Section 3, we then address the other important problem, i.
how to request additional votes (in case the algorithm decitlis
not done yet). In general, a solution to the Judgment Prolidem
based upon acoring functions. The scoring function first com-
putes ascores(i) for each objecb;, with the scores(7) represent-
ing the “confidence” that objeat; is the true maximum. As we
will see, for some strategies scores are actual probasi)ifor oth-
ers they are heuristic estimates. Then, the strategy selecbbject
with the largest score as its answer.

Representation: We represent the evidence obtained asiann
vote matrixW, with w;; being the number of votes fer; being
greater tha;. Note thatw;; = 0 for all .. No other assumptions
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Figure 1: How should these objects be ranked? Vote matrix (left) and
equivalent graph representation (right). Arc weights @gat® number of
votes.

are made about the structure of matVix. The evidence can also
be viewed as a directed weighted graph = (V, A), with the
vertices being the objects and the arcs representing theoudgt
comes. For each pait, j), if w;; > 0, arc (¢, 7) with weight
w;j IS present inA. For example, Figure 1 displays a sample vote
matrix and equivalent graph representation. In this examub-
ject 1 is calledA, object 2 isB, and so on. For instance, there is
an arc from vertex (objectp to vertexC' with weight 2 because
w3 = 2, and there is a reverse arc frofito B with weight 1
becauseuvs » = 1. If there are no votesad;; = 0, as fromB to A),
we can either say that there is no arc, or that the arc has wigh

2.2 Maximum Likelihood

Preliminaries: We first present a Maximum Likelihood (ML) for-
mulation of the Judgment Problem. We directly compute thecib
that has the highest probability of being the maximum olijec,
given vote matrixi. Assuming that average worker accuraey
is known, the ML formulation we present is the optimal feésib
solution to the Judgment Problem.

Let 7 be a random variable over the set ofrallpossible permu-
tations, where we assume a-priori that each permutatioguially
likely to be observed. We denote the probability of a givermpe
tationm, given the vote matri¥y as P(w = mq|W). For the ease
of exposition, we adopt the shorthaf{r,|W') instead of writing
P(m = mq|W). To derive the formula foP (74| W), we first apply
Bayes’ theorem,

PW|ma)P(ra) _  P(Wlmra)P(ma)
P(W) > P(W|rj)P(r)

P(ralW) = @)

From our assumption that the prior probabilities of all petations
are equal P(rq) = 2.

Now considerP (W |rq). Given a permutatiomry, for each un-
ordered paifi, j}, the probabilityf~, (i, j) of observingw;; and
wj; is the binomial distribution probability mass functionr¢pf.):

e i) < )
T (Zvj) - (wizutfjji)pw”(l — p)w“ if ﬂ-d(j) < ﬂ-d(i)

2
Note that if bothw;; andw;; are equal to 0, therfr, (i, ) =
1. Now, given a permutatiom,, observing the votes involving
an unordered paifi, j} is conditionally independent of observ-
ing the votes involving any other unordered pair. Using faid,
P(W|rq), the probability of observing all votes given a permuta-
tion 4 is simply:

P(W|ﬂ—d): H fﬂd(ivj)

1,5:1<]

®)

Since we know the values of boghand W, we can derive a for-
mula for P(74|W) in Equation 1. In particular, the most likely
permutation(s), is simply:

arg max P(ma|W) (4)
The permutations optimizing Equation 4 are also knowKemeny
permutationsor Kemeny rankingf9].

For example, consider the matfik of Figure 1. We do not show
the computations here, but it turns out that the two most giteh
permutations of the objects af®, C, B, A) and (C, D, B, A),
with all other permutations having lower probability. Thissult
roughly matches our intuition, since objedtwas never voted to
be greater than any of the other objects, @dnd D have more
votes in favor over3.

We can derive the formula for the probability that a giveneaibj
o; has a given rank. Let 7 '(i) denote the position of object
1 in the permutation associated with random variable We are
interested in the probability?(w~* (k) = j|TW). Since the event
(m = mq) is disjoint for different permutations,, we have:

S PrdW)

—1 .
dim (k)=

P(x" (k) = jIW) =

Substituting forP(74|W) using Equation 1 and simplifying, we

have:
>

P(Wima)

©)

Since we are interested in the objegtwith the highest proba-
bility of being rank 1, e.g.P(7~*(1) = j|W), we now have the
Maximum Likelihood formulation to the Judgment Problem:

ML FORMULATION 1  (JUDGMENT). Given W and p,
determine:arg max; P(w~*(1) = j|W).

In the example graph of Figure 1, whité and D both have
Kemeny permutations where they are the greatest objéetis
the more likely max over a large range pfvalues. For instance,
forp = 0.75, P(m (1) = C|W) = 0.36 while P(x (1) =
D|W) = 0.54. This also matches our intuition, sin€ééhas one
vote where it is less thaB, while D is never voted to be less than
either A or B.

Maximum Likelihood Strategy: Equation 5 implies that we only
need to computé’ (W |mq) for each possible permutatiary, us-
ing Equation 3, in order to determin@(z ' (k) = j|W) for all
valuesj andk. In other words, by doing a single pass through all
permutations, we can compute the probability that any abjec
has a rank, given the vote matri¥y .

We call this exhaustive computation of probabilities tfiax-
imum Likelihood Strateggnd use it as a baseline in our experi-
ments. Note that the ML strategy is the optimal feasible tsmiu
to the Judgment Problem. The pseudocode for this stratedjg-s
played in Strategy 1. The strategy utilizes a ML scoring fiorg
which computes the score of each objeckgy = P(w (1) =
jIW). The predicted max is then the object with the highest score.
Note that the strategy can be easily adapted to compute tkie ma
mum likelihood of arbitrary ranks (not just first) over the séall
possible permutations.

2.3 Computational Complexity



Maximum Likelihood Permutations: We begin by considering
the complexity of computing Equation 4. The problem has been
shown to beNP-Hard [31]. We briefly describe the result, before
moving on to the Judgment Problem.

Consider Equation 3. Let(wq, W) denote the number of votes

in W that agree with permutatiary, e.g.4¢(mwq, W) Z

ijimg (§)<mq(i)
LetT'(W') denote the total number of votesii, e.g.7 = ||[W]||;.
Equation 3 can be rewritten as:

P(Wlﬂ'd) = Zp'll’(ﬂ'daW) (1 _p)T(W)fq/;(ﬂ—d}W) (6)

In this expressionZ is a constant. Note that’(1 — p)*~* is an
increasing function with respect g for 0.5 < p < 1 and constant
a. Therefore, maximizingP (W |r4) is equivalent to maximiz-
ing ¢ (mwq, W). This implies that computingrg max; ¢ (m;, W) is
equivalent to computing the most likely permutationfsy max; P (|
1(-) is known as th&Kemeny metricand has been well studied in
the economic and social choice literature [19]. Referrioghe
example in Figure 1, the Kemeny metric is maximized by twe per
mutations of the object$,D, C, B, A) or (C, D, B, A). For both
these permutations, the Kemeny metric is equalt@-+1+3 = 8.
We next show that maximizing the Kemeny metric is equivatent
solving a classicaNP-Hard problem.

Consider the directed gragh, = (V, A) representing the votes
of W (Figure 1 is an example). Thainimum feedback arc sef
G, is the smallest weight set of args C A such thatV, A\A,) is
acyclic. Equivalently, the problem can also be seen as miaixign
the weight of acyclic grapkV, A\A’).

Now, supposing we have a method to solve for the minimum
feedback arc set, consider a topological orderin@f the vertices
in the resulting acyclic graph. Referring back to Equationh@
permutationr, maximizes the Kemeny metrj¢’ ™" Therefore,
solving the minimum feedback arc set problemday is equivalent
to our original problem of finding the most likely permutatigiven
a set of votes. Referring back to our example in Figure 1, tim-m
mum feedback arc setis 2, equivalent to cutting(@¢B) and one
of arcs(C, D) or (D, C).

Finding the minimum feedback arc set in a directed graph is a
classicalNP-Hard problem, implying that the problem of finding
the ML permutation given a set of votesNé-Hard as well.

THEOREM 1. (Hardness of Maximum Likelihood Permutation) [3
Finding the Maximum Likelihood permutation given evideise
NP-Hard.

Hardness of the Judgment Problem:In Section 2.2, we presented
a formulation for the Judgment Problem based on ML for finding
the object most likely to be the max (maximum) objectin Un-
fortunately, the strategy based on that formulation was mdex
tionally infeasible, as it required computation acrosslbermu-
tations of the objects i. We now show that the optimal solution
to the problem of finding the maximum object is in fatP-Hard
using a reduction from the problem de&termining Kemeny win-
ners[17]. (Hudry et al. [17] actually show thaketermining Slater
winners in tournaments NP-Hard, but their proof also holds for
Kemeny winners We will describe theKemeny winneproblem
below.) Our results and proof are novel.

THEOREM 2. (Hardness of the Judgment Problem) Finding the
maximum object given evidenceN®-Hard.

PROOF We first describe the Kemeny winner problem. In this
proof, we use an alternate (but equivalent) view of a dirteteighted

Wi 4

graph like Figure 1. In particular, we view weighted arcs ag-m
tiple arcs. For instance, if there is an arc from vertexo B with
weight3, we can instead view it & separate edges frorh to B.
We use this alternate representation in our proof.
An arci — j respects a permutation if the permutation bas
. ranked higher than; (and does not if the permutation haganked
higher thano;). A Kemeny permutatiois simply a permutation
of the vertices (objects), such that the number of arcs thatal
respect the permutation is minimum. There may be many such
permutations, but there always is at least one such perioitat
The starting vertex (rank 1 object) in any of these permaitestiis
a Kemeny winner It can be shown that finding a Kemeny winner
is NP-Hard (using a reduction from the feedback arc set problem,
similar to the proof in Hudry et al. [17]).
We now reduce the Kemeny winner determination problem to
ne of finding the maximum object. Consider a directed weidht
aphG, where we wish to find a Kemeny winner. We show that
with a suitable probabilityp, which we set, the maximum object
(i.e., the solution to the Judgment Problemyins a Kemeny win-
ner. As before, the probability that a certain objects the maxi-
mum object is the right hand side of Equation 5 witket tol. The
denominator can be ignored since it is a constant foj.allve set
worker accuracy to be very close td. In particular, we choose a
valuep such that—2 < L.
Now, consider all permutations; that are not Kemeny permuta-
tions. In this case, it can be shown that Z P(W|mq) <
d:7 4 is not Kemeny
P(W|rs) for any Kemeny permutation,. Thus, the objeat; that
maximizes Equation 5 (fok = 1) has to be one that is a Kemeny

winner.
Toseewhy > P(W|m) < P(W]r,) for a Ke-
d:7 4 is not Kemeny

meny permutatiorr,, notice that the left hand side is at madtx

P(W|7r;) wherew; is the permutation (not Kemeny) that has the
least number of arcs that do not respect the permutatiore that
P(W|7r;) is at mostP (W |s) x 1*7” since this permutation has at
least one more mistake as compared to any Kemeny permutation

Therefore, we have shown that, for a suitapJehe maximum
object inG is a Kemeny winner. Thus, we have a reduction from
the Kemeny winner problem to the Judgement problem. Sinde fin
ing a Kemeny winner ilP-Hard, this implies that finding the max-
1iTnum object inG is NP-Hard. [

#P-Hardness of Probability Computations: In addition to being
NP-Hard to find the maximum object, we can show that evaluating
the numerator of the right hand side of Equation 5 (witk= 1) is
#P-Hard, in other words: computing(z~'(1) = j, W) is #P-
Hard.

We use a reduction from the problem of counting the number
of linear extensions in a directed acyclic graph (DAG), whis
known to be#P-Hard.

THEOREM 3. (#P-Hardness of Probability Computation) Com-
puting P(w (1) = j, W) is #P-Hard.

PROOF. A linear extension is a permutation of the vertices, such
that all arcs in the graph respect the permutation (i.eneali ex-
tension is the same as a Kemeny permutation for a DAG).

Consider a DAGG = (V, A). We add an additional vertex
such that there is an arc from each of the vertice&'ito z, giv-
ing a new graphz’ = (V’, A”). We now show that computing
P(m~ (1) = 2,W) in G’ can be used to compute the number of



linear extensions id:. Notice that:

|A']
P(r= (1) =2, W) Zalp

\A\l

|A']

=% 3 ai(

=0

LRy )

wherea; is the number of permutations where there aagcs that
respect the permutation. Clearly, the number that we wistheto
termine isa| 4/, Since that is the number of permutations that cor-
respond to linear extensions. Equation 7 is a polynomialegiele
|A’in 222 thus, we may simply choogel’| + 1 different values

of =2, generat¢A’| + 1 different graphs=’, and use the probabil-

ity computatlon in Equation 7 to create a set éf| + 1 equations
involving thea; coefficients. We may then derive the valuenpy;
using Lagrange’s interpolation formula.

Since vertexz is the only maximum vertex ', by comput-
ing P(m~'(1) = 2,W) in G’, we count the number of linear
extensions in DAGG. Since counting the number of linear ex-
tensions in a DAG i¢P-Hard, this implies that the computation of
P(m~ (1) = x, W) in G’ is#P-Hard, which implies that the com-
putation of P(w~* (k) = j, W) for directed graptG, (associated
with vote matrixi¥) is #P-Hard. [

Strategy 1Maximum Likelihood

Require: n objects, probability, vote matrixi¥’
Ensure: ans= maximum likelihood maximum object
s[-] < 0{slé] is used to accumulate the probability ttias the
maximum object}
for each permutation of n objectsdo
prob «— 1 {prob is the probability of permutationr given
vote matrixiv'}
for each tuple, j) : i < j do
if 7(i) < m(j) then
prob « prob x (w”,;utf"ﬂ)p“’ji (1 —p)wi
else ’
prob < prob x (“’”w:“”) p?ii (1 — p)¥it
end if
end for
s[r™H(1)] e s[r ™"
end for
ans < argmax; s[i|

(1)] + prob

2.4 Heuristic Strategies

The ML scoring function is computationally inefficient anda
requires prior knowledge af, the average worker accuracy, which
is not available to us in real-world scenarios. We next itigese
the performance and efficiency of four heuristic strategéesh of
which runs in polynomial time. The heuristics we present| -
ing the Indegree heuristic, do not require explicit knovgeaf the
worker accuracy.

Indegree Strategy: The first heuristic we consider is an Indegree
scoring function proposed by Coppersmith et al. [11] to agpr
imate the optimal feedback arc set in a directed weighteghgra
where arc weights;;, l;; satisfyl;; + l;; = 1 for each pair of
verticesi andj. In this section, we describe how to transform our
vote matrixWV to a graph where this Indegree scoring function can
be applied. Letr(:) denote the rank, or index, of objeet in the
permutation associated with random variatle

Given vote matriX¥’, we construct a complete graph between all
objects where arc weighis; are equal tdP? (7 (i) < 7 (j)|wiz, wjs).
l;; reflects the probability thai; is greater tham; given thelocal
evidencew;; andwj;. It is important to note that this method is a
heuristic, e.g., we computB( (i) < (j)|wi;, w;:), rather than
P(w(i) < m(j)|W), which requires full enumeration over ail
permutations.

How do we compute arc weighit( (i) < m(5)|wij;, w;ji)?

P (i) < m(j)|wij,wys) =

P(wij, wyi|m(i) < w(5))P(w(i) < 7(5))
P(wij, wji)

®

Assuming that a priori all permutationsare equally likely,P (7 (i) <
w(j)) = P(w(j) < =(i)) by symmetry. Using Equation 8 to
find expressions folP (7 (i) < = (j)|wij, w;:) and P(w (i) >
7(j)|wij, wji), we can derive the following:

P(r(i) < 7(f)|wig, wji) _ Plwiy, ws|m (i) < ()

P (i) > w(j)|wij, wji) — Plwig, wiilw (i) > w(j))
SinceP(m (i) < = (j)|wij, wji) + P(w(5) < 7(i)|wij, wjs) = 1,
we can simplify Equation 9 to get the following expression:

P (i) <7 (f)wij, wyi) =

P(wig, wi|m (i) < 7(j))
P(wij, wyslm (i) <7 (5)) + P(wiz, wyslw (i) > 7(j))

9)

(10

Using Equation 2P (w;;, wji|m (i) < 7 (j)) andP(w;j, wji|m (i) <
7(j)) can be computed directly from the binomial distribution g.m
Therefore, we can compute the arc weight=
needed for the Indegree scoring function. It should be dlear
lij + 15 = 1. Also, if w;; andw;; are both equal to zero, then both
l;; andl;; are computed to be 0.5.

Strategy 2Indegree

Require: n objects, probability, vote matrixiV’
Ensure: ans= predicted maximum object
s[]+0
fori:1...ndo
forj:1...n,j#i¢do
sli] «— sli] + L {l: = P(m (i) <
end for
end for
ans < argmax; s[i|

() wiz, wji)}

The Indegree scoring function, displayed in Strategy 2, mates
the score of objeat; as:s(j) = >_, li;. Intuitively, vertices with
higher scores correspond to obJects which have compareddly
to other objects, and hence should be ranked higher. Thécpedd
ranking has been shown to be a constant factor approximagion
the feedback arc set for directed graphs where all &icp) are
present and;; + ;; = 1 [11]. The running time of this heuristic is
dominated by the time to do the final sort of the scores.

Let us walk through the example graph in Figure 1. First, for
those pairs of vertices that do not have any votes between,the
we havelac = 0.5,lca = 0.5,lap = 0.5, andlipa = 0.5. By
symmetry,lcp = 0.5 andipc = 0.5. Given a value ofp, we
use Equation 10 to compute the rest of the arc weights.pFer
0.55, we havelag = 0.599,lp4 = 0.401,lpc = 0.55,lcp =
0.45,lpp = 0.646, andlpp = 0.354. With these computed arc
weights, we obtain the scores(A) = 1.401, s(B) = 1.403, s(C) =
1.55, ands(D) = 1.65, generating a predicted ranking@, C, B, A),

P(m(i) < m(j)|wij, wjs)



with object D being the predicted maximum object. Note that if
is larger, e.g.p = 0.95, the Indegree heuristic predicts the same
ranking.

Local Strategy: The Indegree heuristic is simple to compute, but
only takes into account local evidence. That is, the scombf#ct

o; only depends on the votes that inclugledirectly. We now con-
sider a Local scoring function, adapted from a heuristiqopszd
by David [13], which considers evidence two steps away from
This method was originally proposed to rank objects in inptate
tournaments with ties. We adapted the scoring function tcset+
ting, where there can be multiple comparisons between tshjaad
there are no ties in comparisons.

This heuristic is based on the notion of wins and losses, eléfin
as follows: wins(i) = >, w;; andlosses(i) = -, wi;. For
instance, in Figure 1, verte& has 3 wins and 5 losses.

The scores(7) has three components. The firstis simplin.s (i) —
losses(i), reflecting the net number of votes in favor @f For
vertex B, this first component would b& — 5 = —2. Since this
first component does not reflect the “strength” of the objectsas
compared against, we next add a “reward”: for eaglsuch that
wj; > wq; (¢ has net wins ovey), we addwins(j) to the score
of 0;. In our example B only has net wins oved, so we reward
B with wins(A) (which in this case is zero). On the other hand,
sinceC beat outB, thenC' gets a reward ofvins(B) = 3 added
to its score. Finally, we “penalize$() by subtractingosses(j)
for eacho; that overall beab;. In our example, we subtract from
s(B) bothlosses(C') = 2 andlosses(D) = 1. Thus, the final
scores(B) is —2 plus the reward minus the penalty, i.e(B) =
—2+0—-3=-5.

More formally, scores(7) is defined as follows:

)+ Z [1(wjs > wij)wins(j)]

J

losses(i

-2

s(i) = wins(i) —

(wij > wjs)losses(j)] (11)

Strategy 3Local
Require: n objects, vote matrix?
Ensure: ans= predicted maximum object
wins[-|, losses[], s|-] < 0 {objects are ranked by/[-|}
for each tupl€, j) : do
wins[j| — wins[j] + wq;
lossesli] « losses[i] + w;

end for

fori:1...ndo
s[i] « wins[i] — losses[i] {add wins — losses to s}
forj:1...n,5#ido

if Wi < Wji then
s[i] « s[i] + wins[j] {add reward}
else ifw;; > wj; then
s[i] < s[i] — losses][j] {subtract penalty}
end if
end for
end for
ans < argmax; s[i|

Having computeds(-), we sort all objects by decreasing order
of s. The resulting permutation is our predicted ranking, wkib t
vertex having largest being our predicted maximum object. An
implementation of the method is displayed in Strategy 3.

To complete the example of Figure 1, Strategy 3 computes the

following scores:s(A) = 0—2—5 = —7,s(B) = 3—-5-3 = —5,

s(C)=3-2+4+3=4,ands(D) =4 —1+3 = 6. The predicted
ranking is then(D, C, B, A), with objectD being the predicted
maximum object.

PageRank Strategy: Both the Indegree and Local heuristics use
only information one or two steps away to make inferencesiabo
the objects ofD. We next consider a global heuristic scoring func-
tion inspired by the PageRank [26] algorithm. The generhide-
hind using a PageRank-like procedure is to utilize the vioiég as
away for objects to transfer “strength” between each offiee use
of PageRank to predict the maximum has been previously donsi
ered [5] in the literature. Our contribution is a modified BRgnk
to predict the maximum object i@, which in particular, can handle
directed cycles in the directed graph representirg

Consider again the directed graph, representing the votes of
W (Figure 1 is an example). Let" (i) to denote the outdegree of
vertexi in Gy, €.9.d" (i) = >, wi;. If d* (i) = 0, we say that
is asinkvertex.

Let pr.(i) represent the PageRank of vertex iterationt. We
initialize each vertex to have the same initial PageRaigk, @: () =
%. In each iteratiort + 1, we apply the following update equation

to each vertex:
Z d+ p at

For each iteration, each vertgxtransfers all its PageRank (from
the previous iteration) proportionally to the other vezdé¢ whom
workers have indicated may be greater tharwhere the propor-
tion of j's PageRank transferred tds equal toz745. Intuitively,
pr+(i) can be thought as a proxy for the probability that object

is the maximum object i@ (during iterationt).

What happens to the PageRank vector after performing many
update iterations using Equation 12? Considering the glyaon-
nected components (SCCs)@f, let us define aerminal SCC to
be a SCC whose vertices do not have arcs transitioning ouiteof t
SCC. After a sufficient number of iterations, the PageRambpr
ability mass inG, becomes concentrated in the terminal SCCs
of G, with all other vertices outside of these SCCs having zero
PageRank [4]. In the context of our problem, these termiiGCS
can be thought of as sets of objects which are ambiguous &v.ord

Our proposed PageRank algorithm is described in Strategy 4.
How is our strategy different from the standard PageRank-alg
rithm? The original PageRank update equation is:

pria(i (12)

pri+i(i) d+

Comparing the original equation and Equation 12, the prynalir
ference is that we use a damping facfor 1, e.g. we remove jump
probabilities. PageRank was designed to model the behafiar
random surfer traversing the web, while for the problem okiag
objects, we do not need to model a random jump vector.

A second difference between our modified PageRank and the
original PageRank is that prior to performing any updateatiens,
for each sink vertex, we setw;; equal to 1 inT¥/. In our set-
ting, sinks correspond to objects which may be the maximujexbb
(e.g., no worker voted that; is less than another object). By set-
ting w;; to 1 initially, from one iteration to the next, the PageRank
in sink ¢ remains in sinki. This allows PageRank to accumulate
in sinks. Contrast this with the standard PageRank methbggiol
where when a random surfer reaches a sink, it is assumedsjhat (
transitions to all other vertices with equal probability.

Finally, a caveat to our PageRank strategy is that the PadeRa
vector (pr(-) in Strategy 4) may not converge for some vertices



Strategy 4PageRank

| Heuristic | Prediction

Require: n objects, vote matri¥}/, K iterations
Ensure: ans= predicted maximum object
constructG, = (V, A) from W
computed [-] for each vertex {compute all outdegrees}
fori:1...ndo
if d*[i] == 0then
end if
end for
prol] < % {pro is the PageRank vector in iteration 0}
fork:1...K do
fori:1...ndo
forj:1...n,5 #4do

prilil — prilil + e pre—ili]
end for
end for
end for

computeperiod|-] of each vertex using final iterations pf|-]
fori:1...ndo

s[i] < 0 {s[-] is a vector storing average PageRank}

for j: 0...period[i] — 1 do

sli] — sfi] + pric—1il

end for

s[i]
end for
ans < argmax; s[i|

s[i]
period[i]

in terminal SCCs. To handle the oscillating PageRank in itrgaim
SCCs, we execute our PageRank update equation (Equatidor12)
a large number of iterations, denotedfdsn Strategy 4. Then, we
examine the final iterations, say final 10%, of the PageRaatove
to empirically determine thperiod of each vertex, where we de-
fine the period as the number of iterations for the PageRaleva
of a vertex to return to its current value. In practice, we fihdt
running PageRank fak iterations, wherd< = O(n), is sufficient
to detect the period of nearly all vertices in terminal SCE®r
example, consider a graph among 3 objedtsB, C' with 3 arcs:
(A,B),(B,C), and(C, B). All vertices initially have; PageR-
ank probability. After 1 iteration, the PageRank vecto(r(]'s% %)
After 2 iterations, the PageRank vector(is 1, 2). And so on. In
this example, object B and C each have periods of 2.

With the periods computed for each vertex, we computean
eragePageRank value for each vertex over its period. This aver-
age PageRank is used as the scoring functigh for this strat-
egy. After the termination of PageRank, we sort the vertiogs
decreasing order of(-), and predict that the vertex with maximum
average PageRank corresponds to the maximum obj&2t Mote
that our PageRank heuristic is primarily intended to preaimaxi-
mum object, not to predict a ranking of all objects (as marjgcis
will end up with no PageRank). However, for completenessmwh
evaluating PageRank in later experiments, we still do ctardihe
predicted ranking induced by PageRank. The details of optem
mentation are displayed in Strategy 4.

To illustrate our PageRank heuristic, consider again tlaengte
in Figure 1. There are 2 SCCs in the grafht) and (B, C, D),
with (B, C, D) being a terminal SCC. Each of the 4 vertices is ini-
tialized with 0.25 PageRank. After the first iteration, tregERank
vector is (0, 0.375,0.35,0.275). After the second iteration, the
PageRank vector i60, 0.375, 0.35, 0.275). After ~20 iterations,
the PageRank vector oscillates arofig0.217, 0.435, 0.348). With
a sufficiently large number of iterations and an approplyatbo-
sen convergence threshold, the heuristic determines adefi

ML | (D,C,B,A)and(C, D, B, A)
Indegree| (D,C, B, A)
Local | (D,C, B, A)
PageRank Maximum object =C'
Iterative | (C,D, B, A),(C,D,A,B),(D,C,B,A), or
(D,C, A, B)

Table 1: Predictions using each heuristic for Figure 1.

jectC' to be the maximum object i@.

Iterative Strategy: We next propose an Iterative heuristic strategy
to determine the maximum object . The general framework is
the following:

1. Place all objects in a set.

2. Rank the objects in the set by a scoring metric.

3. Remove the lower ranked objects from the set.

4. Repeat steps 3 and 4 until only one object remains.

There are two parameters we can vary in this framework: the
scoring metric and the number of objects eliminated eadfa-ite
tion. Let us define thelif(i) metric of objecto; to be equal to
wins(i) — losses(i). An implementation of the lterative strategy
using thed: f metric is displayed in Strategy 5. In our particular im-
plementation, we emphasize computational efficiency antbve
half of the remaining objects each iteration. The Iterasueat-
egy relies upon the elimination of lower ranked objects hefe-
ranking higher ranked objects. With each iteration, as nobjects
are removed, thdifs of the higher ranked objects separate from
thed:i fs of the lower ranked objects. Basically, by removing lower
ranked objects, the strategy is able to more accurately tfanke-
maining set of objects. The strategy can be thought of aativety
narrowing in on the maximum object.

Itis important to note that other scoring metrics can be weiéul
this Iterative strategy as well. For example, by iteragivelnking
with the Local heuristic, we were able to achieve (slightigtter
performance than the simpé& f metric. Our method is similar to
the Greedy Order algorithm proposed by Cohen et al. [7], vdre ¢
sidered a problem related to feedback arc set. Our stratiéfgysd
in that it is more general (e.g., it can utilize multiple mes), and
our strategy can be optimized (e.g., if we eliminate halfhaf ob-
jects each iteration, we require only a logarithmic numbtesaots,
as opposed to a linear number).

The lterative strategy can also be viewed as a scoring fomcti
s(+), like the prior heuristics we have examined. Denoted(ds
in Strategy 5, we can assign each object a score equal to-the it
eration number in which it was removed from &ét Using this
scoring functions(+), the predicted maximum object is then simply
argmax; s(1).

Returning to the example graph in Figure 1, the Iterativeaiseu
tic first computes theli f metric for each objectdif(A) = —2,
dif(B) = =2, dif(C) = 1 anddif(D) = 3. The objects are
then placed in a set and sorteddf. In the first iteration, objects
A and B are assigned ranks 3 and 4 and removed from the set.
Then, dif is recomputed among all remaining objects in the set,
dif(C) = 0anddif(D) = 0. Inthe second iteration, either object
C or D is removed and assigned rank 2. In the third iteration, the
remaining object is removed and assigned rank 1. Therefoee,
predicted ranking of the lterative heuristic is equallyelik to be
(O7D7B7A)7(07D7A73)7 (D707B7A)' or (D7C7A7B)7 Wlth
the predicted maximum object of the heuristic being objeéctr D
with equal probability.

To summarize, Table 1 displays the predictions for ML and our

1 for both SCCs and computes an average PageRank vector offour heuristics for the example displayed in Figure 1. How age

(0,0.217,0.435, 0.348). The PageRank heuristic then predicts ob-

determine which heuristic strategy is superior to the ather
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Strategy Slterative

Require: n objects, vote matrixt”
Ensure: ans= predicted maximum object
dif[-] < 0{dif[]is the scoring metric}
fori:1...ndo
forj:1...n,7 #4do
dif[j] < dif[j] + wiz; dif[i] < dif[i] — wi;
end for
end for
initialize set@ {which stores objects}
fori:1...ndo
Q— QUi
end for
while |Q| > 1 do
sort objects inQ by di f[-]
forr: (190 +1)...1Q| do
remove objeci (with rankr) from Q
forj:j € Qdo
if w;; > 0then
dif[] — dif[j] — wij; dif[i] — difi] + wi;
end if
if wj; > 0then
dif[i) — dif[i] — wji; diflj) — dif[j] + wjs
end if
end for
end for
end while
ans «— S[1] {S[1] is the final object inS}
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2.5 Experiments

In this section, we experimentally compare our heuristiatet
gies: Indegree (DEG), Local (LOC), PageRank, (PR), anaiter
tive (ITR). We also compare them with the Maximum Likelihood
(ML) Strategy, which we consider the best possible way tectel
the maximum. However, since ML is computationally very ex-
pensive, we only do this comparison on a small scenario. Eor o
experiments, we synthetically generate problem instan@gging
: n (the number of objects i®), v (the number of votes we sample
for W), andp (average worker accuracy). We prefer to use syn-
thetic data, since it lets us study a wide spectrum of scesanith
highly reliable or unreliable workers, and with many or feates.

once. Sdn(n — 1) votes is equivalent to = 10x Edge Coverage
in our experiments.

Each data point (givem, p, v values) in our results graphs is
obtained from 5,000uns Each run proceeds as follows: We ini-
tialize W as ann x n null matrix and begin with an arbitratyue
permutation™ of the objects inD. Let U denote the set of all tu-
ples(i, j) wherei # j. We randomly sample tuples fromU with
replacement. After sampling a tuplg j), we simulate the human
worker’s comparison of objects ando;. If 7*(i) < 7*(j), with
probability p, we incrementw;;, and with probabilityl — p, we
incrementw;;. If 7*(j) < 7*(4), with probabilityp, we increment
w;j, and with probabilityl — p, we incrementw;;.

For each generated matri¥” in a run, we apply each of our
heuristic strategies to obtain predicted rankings of thgab in
O. Comparing the predicted ranking withi* we record both (a)

a “yes” if the predicted maximum agrees with the true maximum
and (b) reciprocal rank, the inverse rank of the true maxinalom
ject in the predicted ranking. Finally, after all runs coetel, we
compute (a) Precision at 1 (P@1), the fraction of “yes” cases
the number of runs, and (b) the Mean Reciprocal Rank (MRR), th
average reciprocal rank over all runs.

As a first experiment, we consider the prediction perforneanc
of Maximum Likelihood (ML) and the four heuristics for a sdt®
objects withp = 0.75, displayed in Figure 2. We choose a small set
of objects, so that ML can be computed. Looking at Figuref@(le
we find that as the number of votes sampled increases, the P@1 o
all heuristics (excluding PageRank) increase in a concavener,
approaching a value of 0.9 for 10x Edge Coverage. In othedsyor
if 5n(n—1) votes are uniformly sampled, the heuristics can predict
the maximum object 90% of the time, even though average worke
accuracy is 0.75. Similar prediction curves measuring MRR a
displayed in Figure 2(right).

ML has better performance than all the four heuristics.

As expected, ML performs the best in Figure 2, but recall that
ML requires explicit knowledge qf, and itis computationally very
expensive. Still, the ML curve is useful, since it tells usifar the
heuristics are from the optimal feasible solution (ML). élsote
that PageRank (PR) performs poorly in Figure 2, indicatimag t
PageRank is poor when the number of objects is small.

Iterative is the best of the four heuristics when the number
of votes sampled i€~ e.g. 1x Edge Coverage.

For a larger experiment, we consider the problem of preaticti
for n = 100 objects in Figure 3. ML is necessarily omitted from
this experiment. Looking at the graphs, we first note thatlthe
erative (ITR) heuristic performs significantly better thizwe other
heuristics, particularly whep = 0.55 or p = 0.75. This is best
demonstrated by Figure 3(middle), which shows thatfer 0.75

In our base experiments, we vary the number of sampled votes and 10x Edge Coverage, the Iterative heuristic has a P@1esf ov

v, from 0 to 5n(n — 1) and vary worker accuracy from 0.55 to
0.95. As a point of reference, we referﬁé”;—l) votes av = 1x

0.9, whereas the second best heuristic, Indegree (DEG),had
a P@1 of approximately 0.5. Looking at the middle graph again

Edge Coveragee.g. each pair of objects is sampled approximately note how the performance gap between the Iterative heuasiil
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the other heuristics widens as the Edge Coverage increasad k

to 5x. The strength of the Iterative strategy comes from i a

ity to leverage the large number of redundant votes, in otder
iteratively prune out lower-ranked objects until there jsradicted
maximum. The strategy is robust even when worker accuracy is
low. When average worker accuracy is high, Figure 3(rigtt
Iterative heuristic still is the heuristic of choice, alttgh the per-
formance gap between the lIterative and Indegree or LocalC{)LO
heuristics decreases to a minimal amount, as the numberte$ vo
sampled becomes very large.

PageRank is a poor heuristic when worker accuracy is low.
However, when worker accuracy is reasonable, PageRank is
quite effective, even when the number of votes is low.

We next focus upon the performance of the PageRank (PREheuri
tic. Forp = 0.75 andp = 0.95, the PageRank heuristic’s predic-
tion curve crosses the prediction curves for the IndegreEGP
and Local (LOC) heuristics. This is an indication that thgé&R-
ank heuristic is quite effective when the number of votesug but
is unable to utilize the information from additional voteken the
number of votes is large. We also observe the poor performahc
PageRank whep = 0.55, in Figure 3(left), indicating that PageR-
ank is not a suitable heuristic when worker accuracy is low. F
nally, note that the Indegree and Local heuristics perfamilarly
across all worker accuracies. This indicates that priomkadge
of worker accuracy, which the Indegree heuristic requires, is not
necessary to perform good prediction if a more sophistitat®r-
ing function, such as the Local heuristic, is used.

Over various worker accuracies, lterative is the best Iseufi
tic, followed by PageRank, Local and Indegree.

From the prior experiments, we see that prediction perfoicea
for each strategy varies greatly with respect to the avevag&er
accuracyp. We next directly investigate prediction performance
versus worker accuracy for a fixed 1x Edge Coverage. As shown
in Figure 4, we find that for this fixed Edge Coverage, the kera
tive (ITR) strategy performs the best, followed by PageR@R),
then the Local (LOC) and Indegree (DEG) heuristics. As etqubc
prediction performance increases with worker accuracpsscall
strategies. In particular, note the large slope of the fivsraand
PageRank prediction curves, as compared to the Local ared Ind
gree prediction curves, which are near identical.

PageRank is the best of the four heuristics when there
few votes and worker accuracy is high.

are

All experiments considered thus far examine predictionmihe
number of votes is an order of magnitude larger than the nuwibe
objects. For a more difficult scenario, we examine predicper-
formance when the number of votes is approximately the same a
the number of objects. Figure 5 displays prediction perfomoe
for 100 objects when the number of votes is varied from 20 @ 20
andp = 0.95. We observe that PageRank (PR) has the highest
prediction performance among the four heuristics. Coridgaev-
eral other experiments, we find that, so long as worker acgus
high, PageRank facilitates good prediction, even when timeber
of votes is low relative to the number of objects. This fadt priove
useful when we consider the problem of selecting which aathd
votes to request, given an initial sparse vote graph.

From our experiments regarding prediction performancegove
clude that Iterative (ITR) is the strategy of choice when@gating
a large number of votes (relative to the number of objecthgnas
PageRank is the preferred heuristic when evaluating a smai-
ber of votes.

3. NEXT VOTES PROBLEM

We now consider the second half of the Max Problem, the Next
\otes Problem. Beginning with an initial vote matfii, if we wish
to submit additional vote requests to a crowdsourcing nipl&ee,
which additional votes (i.e., comparisons between paicbgcts)
should be requested to augment our existing vote méatfixand
improve our prediction of the maximum object? In particulae
assume that we are given a vote budgeb afdditional votes that
may be requested. There are two ways in which we can use this
vote budget: (a) an adaptive strategy, where we submit soitie i
votes, get some responses, then submit some more, get more re
sponses, and so on, or (b) a one-shot strategy, where we tsalbmi
votes at once. In this paper, we consider a one-shot stratghy
a vote budget 0b. This strategy is more relevant in a crowdsourc-
ing setting since the latency of crowdsourcing is high. Ot
responses for these vote requests are received, we assamntleeth
entire evidence thus far is our new vote matfix'. Note that we
can iteratively submit batches of votes to improve our prieain of
the maximum object. As before, we assume that the response to
each vote is i.i.d. correct with probability. We define the Next
\otes Problem as follows:

PROBLEM2 (NEXT VOTES). Givenb, W, selecth addi-
tional votes and predict the maximum objectinz* ' (1).

3.1 Maximum Likelihood

We first present a Maximum Likelihood (ML) formulation of the
selection of votes for the Next Votes Problem; we directlgnpoite
the multiset of votes which most improves the prediction haf t
maximum object ir0. Assuming that average worker accuradg
known, the ML vote selection formulation we present is theérgl
feasible solution to the Next Votes Problem. Beforing pntisg
the ML formulation, we first provide some definitions needed f
the Next Votes Problem.

Vote and Answer Multisets: We represent a potential vote (com-
parison) between objects ando; as a unordered paifo;, o; }.
Given a vote budget, all possible multisets) of b votes are al-
lowed (note that repetition of votes is allowed). For a ptidivote
{0i, 0, }, we define an answer to be a tup{®, o, }, o), where the
first element of the tuple is an unordered pair, and the seeted
ment is one of the objects in the pair indicating the humarkexs




answer (e.gx = i if the worker states that; is greater thaw;, or
x = j otherwise).

For each vote multis&d, we define an answer multiseof @ to
be a multiset of answer tuples, where there is a one-to-oppimg
from each unordered pair iQ to an answer tuple in. Note that
each vote is answered (independently) with probabjlityAs an
example, ifQ = {{oi,0;}, {ox, 01} }, @ possible answer multiset
that could be received from the workers{igo;, 0; }, 0:),

({ox, o1}, o) }. Note that for a multiset df votes, there arg® pos-
sible answer multisets. Let(Q) denote the multiset of all possible
answer multisets of).

Having defined vote and answer multisets, we next consider th
probability of receiving an answer multiset givé¥, then explain
how to compute the confidence of the maximum object having re-
ceived an answer multiset, before finally presenting the Mtev
selection strategy.

Probabilities of Multisets and Confidences: Suppose that we
submitted vote multise® and received answer multisefrom the
crowdsourcing marketplace. L&(a|WW) denote the probability of
observing an answer multisetfor @, given initial vote matrixiv’.
We have the following:

PlanW)
P(W)

wherea ATV is the new vote matrix formed by combining the votes
of a andW.

Our estimate for how well we are able to predict the maximum
object inO is then the probability of the maximum object, given
the votes of our new vote matrix, i.e.,A WW. We denote this value
by Praz(a ATW), i.e., this value is our confidence in the maximum
object. The computation, based upon Equation 5, is theviiaig:

Praa(a A W) = max P(r = (1) = ila A W)

P(a|W) = (13)

This simplifies to give:

max; P(m (1) =4,a A W)

Pras(a AW) = PlanW)

(14)

Maximum Likelihood Strategy: We can now define the Maxi-
mum Likelihood formulation of the Next Votes Problem. We lvis
to find the multiset) of b votes such that, on average over all pos-
sible answer multisets fa (and weighted by the probability of
those answer multisets), our confidence in the predictiothef
maximum object is greatest.

In other words, we want to find the multiset that maximizes:

> P(alW) X Praz(a AW)
a€A(Q)

which, on using Equations 13 and 14, simplifies to:

SinceP (W) is a constant, independent @f we have:

ML FORMULATION 2 (NEXT VOTES). Given b, W,
find the vote multise®, |@Q| = b, that maximizes
Z max P(w ™ (1) =i,a A W) (15)
a€A(Q) ’

Let score(Q®) be the value in Equation 15. We now have an ex-
haustive strategy to determine the best muliigetomputescore(-)
for all possible multisets of siZe and then choose the multiset with

the highest score. Although this strategy is the optimadif#a so-
lution to the Next Votes Problem, it is also computationafiiea-
sible, since a single iteration of ML itself requires enuatem of
all n! permutations of the objects i@. Additionally, knowledge
of worker accuracy is required for ML vote selection. This leads
us to develop our own vote selection and evaluation framlewnor
abling more efficient heuristics.

3.2 Computational Complexity

As in the Judgment Problem, the Next Votes Problem also turns
out to beNP-Hard, while the computation of the probabilities in-
volved also turns out to b#&P-Hard. While the proofs use reduc-
tions from similar problems, the details are quite différen

Hardness of the Next Votes ProblemWe first show that the ML
formulation for the Next Votes Problem P-Hard, implying that
finding the optimal set of next votes to request is intracabl

THEOREM4 (HARDNESS OFNEXT VOTES). Finding the vote
multiset@ that maximize$ =, _ , o, max; P(w~'(1) = i,a AW)
is NP-Hard, even for a single vote.

PROOF. (Sketch) Our proof for the Next Votes problem uses
a reduction from the samBP-Hard problem described in Sec-
tion 2.3, i.e., determining Kemeny winners.

We are given a grapi’ where we wish to find a Kemeny winner.
We add an extra vertex to this graph to create a new graph,,
wherev does not have any incoming or outgoing arcs. By defini-
tion, v is a Kemeny winner ir’, since trivially,v can be placed
anywhere in the permutation without changing the numbercg a
that are respected. Therefore, there are at least two Kemeny
ners inG’. Recall, however, that our goal is to return a Kemeny
winner inG’, notinG.

Now, consider the solution to the Next Votes problem @h
where an additional vote is requested. We need to show tkat th
two vertices returned by the Next Votes problem are both Kkeme
winners inG. Let the two vertices be, y. As before, recall that

P(r~'(1) =i, aAnW)= > P(r)P(W Aalr)

T Wins

Ignoring P(7), which is a constant, we have two terms:

F = max Z P(W A x> y|m)+max Z PW Ay > x|m)

T Wins T Wins

Now consider Kemeny permutationsdf. Let the set of Kemeny
winners beS, and let the number of Kemeny permutations begin-
ning with each of the winners he > s» > ...s,. We also let
the probabilityp be very close td so that only Kemeny permuta-
tions form part of F'. If we choose two Kemeny winners asand

y, the expressioif” can be as large ds1 + s2) x P, whereP is

the probability corresponding to one Kemeny permutation.tid
other hand, if both of andy are not Kemeny winners, then we can
show thatF < (s1 + s2) x P (since the constraint of < y and

y > x eliminates some non-zero number of permutations from the
right hand side of the expression.) Now it remains to be sken i
may be a Kemeny winner whilgis not. Clearly, the first term can
be as big as; P. It remains to be seen if the second term can be
s2P. Note that since: is Kemeny, enforcing that > x is going to
discount all permutations whereaxz > = > y. Thus the second
term cannot be as big as P. Thus both the vertices returned by
the Next Votes problem are Kemeny winners. Thus, the Kemeny
winner determination problem o&' can be reduced to the Next
Votes (with one vote) problem of’.

O
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Figure 6: How should we select additional votes to request?

#P-Hardness of Probability Computations: We next show that
computing Equation 15 #P-Hard.

THEOREM5 (#P-HARDNESS OFNEXT VOTES). Computing
D g a(g) Maxi P(w~Y(1) = i,a A W) is#P-Hard, even for aQ
with a single vote.

PROOF (Sketch) Our proof uses a reduction from #e-Hard
problem of counting linear extensions in a DAG. Consider &8A
G = (V, A). We now add two additional vertices,andy, such
that there is an arc from each of the verticesdrto = and toy
giving a new graplz’ = (V', A").

Consider the computation &F . , ) max; P(r~ (1) = i,an
W) forQ = {{x,y}} for G’, which simplifies tomax; >~ . ...
PWA (x> y)lm) +max; 32 i ine PW A (y > z)|m).

The first of these two terms is maximized wheris the maxi-
mum, and the second term is maximized wheis the maximum.
Both terms are identical, sinaeandy are identical, so we focus on
only one of the terms. LeF'(p) = > .. P(W Az > y|m).
Using a calculation similar to that used to derive Equationveé
have: F(p) = pl4'l x 3214 a;(£2)141~. We are interested in
a4, the number of permutations that correspond to linear exten

sions. Once again, by repeating the trick in Theorem 3, we may

use multiple values fop to generate different grapis’, and use
the probability computation to derive many equatidn) corre-
sponding to differenp, and then derive the value af 4/ using
Lagrange’s interpolation.

Therefore, counting the number of linear extensiong-irtan
be reduced to a polynomial number of instances of computieg t
probability expression corresponding to the Next Votebfam. [

Algorithm 6 General Vote Selection Framework

Require: n objects, vote matri¥}/, budgeth

Ensure: ans= predicted maximum object
compute scora|-] for all objects using functios {Step 1}
initialize multiset@ {of votes to request}
sort all objects bys[], store object indices iindex|-]
selectb votes for@ using a vote selection strategy {Step 2}
submit batch)
updatelV with new votes from workers
compute final scorg|-] for all objects using functiorf {Step 3}
ans <« argmax; f|i]

of b votes? Since ML vote selection is computationally infelesib
we consider four efficient polynomial-time vote selectidrate-
gies: Paired, Max, Greedy, and Complete Tournament stesteg
For ease of explanation, we use the graph in Figure 6 as an ex-
ample. Before executing a vote selection strategy, we asshat
each object has been scored by a scoring function in StepHeof t
framework, denoted by[-] in Algorithm 6. As a running example

to explain our strategies, we assume that our PageRankshieuri
(Section 2.4) is used as the scoring function in Step 1: ohjec
has score 0.5, objec8 and E' each have score 0.25, and objects
C, D, andF' have score 0. Without loss of generality, assume that
the final rank order of the objects, before next vote selactis
(A,B,E,C,D, F).

Strategy 7 Paired Vote Selection

Require: n objects, budgeb, vote multiset), scoress|-], sorted
object indicesndex[]
Ensure: @ = selected votes
fori:1...bdo
Q «— QU (index[2i — 1], index[2i]) {index[1] has largest
scores}
end for

The first strategy we consider is Paired vote selection (PAIR
displayed in Strategy 7. In this strategy, pairs of objects se-
lected greedily, such that no object is included in more tha@ of
the selected pairs. For example, with a budget ef 2, the strat-

3.3 Selection and Evaluation of Additional Votes egy asks human workers to compare the rank 1 and rank 2 opjects
We next present a general framework to select and evaluate ad and the rank 3 and rank 4 objects, where rank is determinetepy t

ditional votes for the Next Votes Problem. Our approach & th
following:
1. score all objects with a scoring functierusing initial vote
matrix W

2. select a batch dfvotes to request

3. evaluate the new matrik/’ (initial votes in W and addi-
tional b votes) with a scoring functioif to predict the maxi-
mum object inO.

This framework is displayed in more detail in Algorithm 6. In
Step 1, we use a scoring functiel) to score each object, and in
Step 3, we use a scoring functigif-) to evaluate the new matrix
W' to predict the maximum object i®. We briefly discuss the
choice of these scoring functions when presenting expetiahee-
sults later in Section 3.4. For now, we assume the use of angcor
function in Step 1 which scores objects proportional to thabp-
bility that they are the maximum object @. It is important to note
that our general framework assumes no knowledge of worlar-ac
racy p, unlike in ML vote selection. We next focus our attention
upon how to seledi additional votes (Step 2).

Heuristic Vote Selection Strategies:How should we select pairs
of objects for human workers to compare, when given a votgéud

scoring function from Step 1 in Algorithm 6. The idea behihdst
strategy is to restrict each object to be involved in at mos of
the additional votes, thus distributing the&otes among the largest
possible set of objects. This can be anticipated to perfoet w
when there are many objects with similar scores, e.g., wheret
are many objects in the initial vote gragh, which have equally
high chances of being the maximum object. Considering thenex
ple in Figure 6, forb = 2, this strategy requests the vote$, B)
and(E,C).

Strategy 8Max Vote Selection

Require: n objects, budgeb, vote multiset), scoress|-], sorted
object indicesndex[]

Ensure: Q = selected votes

fori:2...(b+1)do
Q — QU (indez[1],indez[i]) {index[1] has largest score
s}

end for

The second strategy we consider is Max vote selection (MAX),
displayed in Strategy 8. In this strategy, human workersagked



to compare the top-ranked object against other objectsldye€&or
example, with a budget @f = 2, this strategy asks human workers

to compare the rank 1 and rank 2 objects, and the rank 1 and rank

3 objects, where rank is determined by the scoring functidBtep
1 in Algorithm 6. Considering again the example in Figureds, f
b = 2, this strategy requests the vote$, B) and(A, E).

Strategy 9 Greedy Vote Selection

Require: n objects, budgeb, vote multiset)), scoress[], sorted
object indicesndez|]
Ensure: @ = selected votes
initialize priority queueS {storing unordered object pairs}
fori:1...bdo
forj:(i+1)...bdo
insert object paifs, j) into S with priority (s[i] x s[j])
end for
end for
fori:1...bdo
Remove highest priority object p&is, y) from S
Q+— QU (z,y)

end for

The third strategy we consider is Greedy vote selection (BRE),
displayed in Strategy 9. In this strategy, all possible cargons
(unordered object pairs) are weighted by the product of toees
of the two objects, where the scores are determined in Stefp 1 o
Algorithm 6. In other words, a distribution is constructett@ss
all possible object pairs, with higher weights assigned higeact
pairs involving high scoring objects (which are more likedyoe the
maximum object inD). After weighting all possible object pairs,
this strategy submits thiehighest weight pairs for human compar-
ison. Considering the example in Figure 6, object paitsB) and
(A, F) has weight 0.125(B, E') has weight 0.0625, and all other
pairs have weight 0. For a buddget= 2, this strategy requests the
votes(A, B) and(A, E).

Strategy 10Complete (Round-Robin) Vote Selection

Require: n objects, budgeb, vote multiset), scoress|-], sorted
object indicesndez|]
Ensure: Q = selected votes
K « 0{K is the size of the round-robin tournament}
while 22EHD < p do
K~ K+1
end while
K—K-1
fori:1...K do
forj:(i+1)...K do
Q — QU (index[i], index[j]) {index[1] has largest score
s}
end for
end for
initialize priority queueS {storing unordered object pairs}
fori:1...K do
insert object paifi, K + 1) into S with priority (s[i] x s[K +
1)
end for
fori:1...(b—
Remove highest priority object pds, y) from S
Q — QU (z,y) {select remaining votes greedily}
end for

Kx(K
KB4 do

The fourth strategy we consider is Complete Tournament vote
selection (COMPLETE), displayed in Strategy 10. In thist&gy,

Precision at 1

50

100 150
Initial Num Votes
Figure 7: Precision at 1 versus number of initial votes. 1 additiorwky 7
objects, p=0.75.

200

we construct a single round-robin tournament amongi€habjects
with the highest scores from Step 1 of Algorithm 6, whéfeis
the largest number such th& 5+ < 4 In a single round-
robin tournament, each of th€ objects is compared against every
other exactly once. For the remaining= b — %ﬂ) votes, we
consider all object pairs containing th& + 1)st (largest scoring)
object and one of the firdk’ objects, and weight each of theke
object pairs by the product of the scores of the two objectsyv@
did with Greedy vote selection). We then select thebject pairs
with highest weight.

The idea behind the Complete Tournament strategy is thatralro
robin tournament will likely determine the largest objestang the
set of K objects. If the set o objects contains the true max, this
strategy can be anticipated to perform well. Regarding ¢fecsion
of the remaining votes, the strategy can be thought of as angm
ing the K object tournament to become an incomplkte- 1 object
tournament, where the remaining votes are selected gydediest
determine if th K 4 1) st object can possibly be the maximum ob-
jectinO. Considering the example in Figure 6, for= 2, there is a
2-object tournament among objectsand B and vote( A, B) is re-
quested. Then, for the remaining vote, the strategy greedibres
object pairs which contain both the next highest rankedatljet
in the tournament, objedt, and one of the initial 2 objects. Object
pair (A, E) will be scored 0.125 an@B, F) will be scored 0.0625,
so the second vote requested.s E).

3.4 Experiments

Which of our four vote selection heuristics (PAIR, MAX, GREE,
or COMPLETE) is the best strategy? We now describe a set of ex-
periments measuring the prediction performance of ourikgcs
for various sets of parameters. When evaluating our votecsel
tion strategies, we utilized a uniform vote sampling pragedde-
scribed previously in Section 2.5, to generate an initidévoatrix
W. Then, in Step 1 of our vote selection framework (Algorithjn 6
we adopted our PageRank heuristic (Section 2.4) as ournggori
function s(-) to score each object i®. In Step 2, we executed
each of our vote selection strategies using these scoreStem
3, we used our PageRank heuristic as our scoring fungtiento

score each object in the new mathix’ (composed of both the ini-
tial votes in vote matriX? and theb requested additional votes),
and generate final predictions for the maximum objeadinNote
that we performed several experiments contrasting priediger-
formance of PageRank versus other possible scoring furscdad
found PageRank to be superior to the other functions. Hemee,
selected PageRank as the scoring function for both Step Stepd
3 of our vote selection framework.
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e ML vote selection outperforms heuristic strategies when
results are evaluated with ML scoring.
e However, when ML vote selection is evaluated with
PageRank (e.g., like the heuristics), prediction perfor-
mances of all methods are similar.

For a first experiment, we compare the prediction perforreanc
(Precision at 1) of our four vote selection heuristics (aaddom
initial vote selection (RAND)) against the “optimal” steay, i.e.,
the Maximum Likelihood (ML) vote selection procedure désed
in Section 3.1. Recall that ML can be used in two places: when
selecting additional votes (as in Section 3.1), and whedigtiag
the max given the initial plus additional votes (e.g., ML lenzion
in Section 2.2). We use ML-ML to refer to using ML for both task
this gives the best possible strategy. To gain additiorsagjhis, we
also consider ML-PR, a strategy where ML is used to selecadhe
ditional votes, and PageRank is used to select the winneceSilL
is computationally very expensive, for this experiment wasider
a small problem: selecineadditional vote given a set of 50 (2.5x
Edge Coverage) to 200 initial votes (10x Edge Coverage) gnaon
set of 7 objectsp = 0.75.

Our experimental results are displayed in Figure 7. Fisgxa
pected, ML-ML has the best performance. Clearly, ML-ML is do
ing a better job at selecting the additional vote and in siglgthe
winner. Of course, keep in mind that ML-ML is not feasible insh
scenarios, and it also requires knowledge of the workerracgy.
Nevertheless, the gap between ML-ML and the other stragegie
dicates there is potential room for future improvement belythe
heuristics we have developed.

Second, we observe in Figure 7 that all other strategietjdnac
ing ML-PR, perform similarly. The relative performance o£MPR
indicates that the gain achieved by ML-ML is due to its bepier-
diction of the winner, as opposed to its choice for the nexevo
In hindsight, this result is not surprising, since the setecof a
single vote cannot be expected to have a large impact. (We wil
observe larger impacts when we select multiple additiooés.)
The results also demonstrate that our vote selection hiesrghow
promise, since they seem to be doing equally well as ML, amcksi
they often perform slightly better than RAND, at least foe the-
lection of a single next vote.

To evaluate our heuristics in larger scenarios, we conduate
series of experiments, and the results of some of those armat
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Figure 10: Gain (P@1) relative to a 0 additional votes baseline vs numbe
of initial votes. 100 objects. 5 add. votes and p=0.75 (tdp), &5 add.
votes and p=0.75 (top right), 5 add. votes and p=0.95 (boktdiy 15 add.
votes and p=0.95 (bottom right).
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general trends that can be observed in these figures.

General observations regarding all strategies:

e As the number of additional votes increases, prediction
performance increases.

e As the number of additional votes increases, the gain
from additional votes decreases (though the decrease is
not very dramatic).

e As worker accuracy increases, prediction performarice
increases.

e As worker accuracy increases, the gain from additio
votes increases.

al

We only explain the graph in Figure 8(right), since the osher
are self-explanatory. In this graph, the vertical axis shoke in-
cremental P@1 gain &tadditional votes, defined as (P@1 with
additional votes - P@1 witk — 1 additional votes) / (P@1 with
0 additional votes). As we can see, the information provided
additional votes is more valuable when there are fewerinittes
(second bullet above).

The Complete Tournament and Greedy strategies are signif-
icantly better than the Max and Paired strategies.

We can also use Figures 8, 9 and 10 to compare our heuristics.
First, notice that the difference between heuristics candog sig-
nificant. For instance, in Figure 10(bottom left) we see that
Paired (PAIR) strategy provides a 0.7x P@1 gain for 5 adutitio
votes (100 initial votegy; = 0.95), while the Complete Tournament
(COMPLETE) strategy provides a 1.5x P@1 gain, where we mea-
sure P@1 gain as (P@1 withvotes - P@1 with 0 votes) / (P@1
with 0 votes). Second, we observe that the Complete Tourneme
and Greedy (GREEDY) vote selection strategies consisteit-
perform the Max (MAX) and Paired strategies in all scenarios
particular, the performance gap between the Complete aouent
or Greedy strategies and the Max or Paired strategies idegrea
when selecting 15 additional votes, as compared to whentsele
5 additional votes. This indicates that when a larger votggbti
b is available for additional votes, the additional voted wé bet-
ter utilized by the more sophisticated strategies (Conapletur-
nament and Greedy) as compared to the simpler strategies (Ma
and Paired). Also, note in Figure 8(left) that the predictierfor-
mances of the Complete Tournament and Greedy strategatigte
improve with additional votes, while the Max and Pairedtsiygées

rized in Figures 8, 9 and 10. To begin, we summarize some of the taper off.
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Figure 11: Objects are divided intd initial object types. Gain (P@1)
relative to a 0 additional votes baseline vs number of ihitztes. 100
objects, p=0.95, 15 additional votes. 1 type (top left), ety (top right), 10
types (bottom left), 20 types (bottom right).

Given only votes between objects of the same type:
e The value of additional votes is greater when it is mare
difficult to predict the maximum object.

e The Complete Tournament strategy is the best stratefy.

Patl

0
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Figure 12: Variations of the Complete Tournament strategy, 10 aduftio
votes. 5 OBJ = compare 5 objects 4 times each. 10 OBJ = compark-1
jects 2 times each. 20 OBJ = compare 20 objects 1 time eacholjééts,
p=0.95.

ment strategy select fewer top objects and propose moredeaht
votes, or should it select more objects and ask fewer voteggie?
For instance, the Complete Tournmament strategy couldtsttle
top three objects and submit four votes for each pair, forta taf
12 additional votes. Or it could select the top 4 objects, fond
each of the possible 6 comparisons, request 2 votes (foratme s
12 total additional votes). What is the best approach?

Figure 12 displays the Precision at 1 of the Complete Tourna-
ment strategy for 10 additional votes, where the votes aifernly
and randomly distributed among the 5, 10, or 20 object3 inith
highest score (as provided in Step 1 of Algorithm 6). We firat th
distributing the 10 votes among 5 objects, where each oligect
compared against every other, leads to the best predicgédiorp

In our scenarios so far, the Complete Tournament and Greedy mance. That is, we do not observe any benefit for distributatgs

strategies perform similarly. To differentiate betweea thvo, we
explored different ways in which the initial votes could beng

erated. (Recall that up to this point we have been randomly se

lecting the pairs of objects that are compared by the invtiaés.)
We next discuss one of these possible different vote geaoerat
schemes. Suppose that our objects are of different typgs ¢eft-
cover books, hardcover books, e-books, etc.), and for season
initial votes between objects of the same type are much nialy |
than across types. For example, it is more likely that twaekis

among a larger set of objects when using the Complete Tourna-
ment strategy. The strategy performs well only when addiio
votes provide the ability to rank the objects in a set. Assgnthat
votes are distributed randomly among object pairs, the Getmp
Tournament strategy is able to order the set only when mgsttsh

in the set are compared against each other. Note that Figuie 1
only an illustration of the interaction between the numbktop
objects selected and the redundancy of votes. The resultgan
depending upon worker accuracy and the vote butlget

have been compared, rather than one e-book and one hard-cove

book. (The situation is analogous to sporting events, whera-
league games are more likely than inter-league games.)

For our experiment, we consider an extreme instance where th
areno initial votes involving objects of different types. In piart
ular, we divide our se© of n objects intok disjoint object types.
When votes are sampled for the initial vote matvix, sampling
of votes is only permitted between objects of the same typepK
in mind that predicting the maximum object @ is more diffi-

cult when there are more object types because each objest typ

will likely have a leader (greatest object), each of thegelées will
have on average similar probabilities of being the maximinjeat
(since object type groups are likely of similar size), and thi-
tial vote matrix¥ provides no information regarding comparisons
between these leaders.

We perform experiments for different values bf(e.g., differ-
ent numbers of initial object types), Figure 11 displaysciien
at 1 gain relative to a 0 additional votes baseline. We olestrat

4. RELATED WORK

As far as we know, we are the first to address the Next \Votes
Problem, and there is no relevant literature that directlgrasses
this problem. Thus, in this section, we review work relatedhe
Judgment Problem. The algorithms and heuristics we preddat
the Judgment Problem are primarily drawn from three divespec
areas: paired comparisons, social choice, and ranking.

The Judgment Problem has its roots in ff@red comparisons
problem, first studied by statisticians decades ago [2Q, i2fhe
paired comparisons problem, given a set of pairwise obtens
regarding a set of objects, it is desired to obtain a rankihthe
objects. In contrast, in the Judgment Problem, we are istteddan
predicting the maximum object.

The Judgment Problem also draws upon classical work in the
economic and social choice literature regardiffgniner Determi-
nationin elections [25, 31]. Numerous voting rules have been used

the P@1 gain increases for the Complete Tournament and reed (Borda, Condorcet, Dodgson, etc.) to determine winnerden-e
strategies ak increases, implying that the value of additional votes tions [28]. The voting rules most closely related to our wark

is greater when it is more difficult to predict the maximum emtij
from the initial vote matrix. That s, in the harder problenstances
(largerk), the additional votes play a more critical role in compar-
ing the object type leaders. More importantly, the Completer-
nament strategy outperforms the Greedy strategy (and thersot
too) in this more challenging scenario.

Finally, we conduct a more in-depth study of the CompleterTou
nament vote selection strategy and examine the benefit efreot
dundancy. Given a limited budget, should the Complete Taurn

the Kemeny rule [19] and Slater rule [29]. Kemeny permutation
minimizes the total number of pairwise inconsistencies rgnall
votes, whereas 8later permutatiominimizes the total number of
pairwise inconsistencies in the majority-vote graph [6h @bject

is considered &emeny winneor Slater winnerif it is the greatest
object in a Kemeny permutation or Slater permutation.

We believe our ML formulation is more principled than these

voting rules, since ML aggregates information across adisgae
permutations. For example, in the graph of Figure 1, whlland



D are both admissible solutions for the Kemeny rule, ML resurn
D as an answer, sinc® has almost one and a half more times

the probability of being the maximum object compared_to No

prior work about the Judgment Problem, to our knowledges use

the same approach as our ML formulation.

In the recent social choice literature, the research mastety
related to ours has been work by Conitzer et al. regardingdfsm
permutations and Maximum Likelihood [9, 10]. Conitzer hagls
ied various voting rules and determined for which of thenretex-
ist voter error models where the rules are ML estimatorsIf8pur
study, we focused upon the opposite question: for a speafierv

error model, we presented both Maximum Likelihood, as wsll a

heuristic solutions, to predict the winner.

Our work is also related to research in the theory community

regarding ranking in the presence of errors [21, 1] and no@&y-

putation [14, 2]. Both Kenyon et al. and Ailon et al. preseni-r
domized polynomial-time algorithms for feedback arc setoiar-

nament graphs. Their algorithms are intended to approxrtet
optimal permutation, whereas we seek to predict the optimir

ner. Feige et al. and Ajtai et al. present algorithms to salva-
riety of problems, including the Max Problem, but their sagos
involve different comparison models or error models tharsou

More generally, in the last several years, there has beeg-a si
nificant amount of work regarding crowdsourcing systemghbo

inside [15, 16] and outside [22, 23] the database commui@ty.

note is recent work by Tamuz et al. [30] on a crowdsourcing sys

tem that learns a similarity matrix across objects, whilapively

requesting votes. Not as much work has been done regardimg ge

eral crowdsourcing algorithms [24, 27]. Instead, most atgmic
work in crowdsourcing has focused upon quality control [&]. 1

5. CONCLUSION

In a conventional database system, finding the maximum ele-
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