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ABSTRACT
We consider a crowdsourcing database system that may cleanse,
populate, or filter its data by using human workers. Just likea con-
ventional DB system, such a crowdsourcing DB system requires
data manipulation functions such as select, aggregate, maximum,
average, and so on, except that now it must rely on human oper-
ators (that for example compare two objects) with very different
latency, cost and accuracy characteristics. In this paper,we focus
on one such function,maximum, that finds the highest ranked object
or tuple in a set. In particularm we study two problems: givena set
of votes (pairwise comparisons among objects), how do we select
the maximum? And how do we improve our estimate by requesting
additional votes? We show that in a crowdsourcing DB system,the
optimal solution to both problems isNP-Hard. We then provide
heuristic functions to select the maximum given evidence, and to
select additional votes. We experimentally evaluate our functions
to highlight their strengths and weaknesses.

1. INTRODUCTION
A crowdsourcing database system uses people to perform data

cleansing, collection or filtering tasks that are difficult for comput-
ers to perform. For example, suppose that a large collectionof maps
is being loaded into the database, and we would like to add data
fields to identify “features” of interest such as washed out roads,
dangerous curves, intersections with dirt roads or tracks not on the
maps, accidents, possible shelter, and so on. Such featuresare very
hard for image analysis software to identify, but could be identified
relatively easily by people who live in the area, who visitedthe area
recently, or who are shown satellite images of the area. A crowd-
sourcing database system issues tasks to people (e.g., tag features
on this map, compare the quality of one map as compared to an-
other), collects the answers, and verifies the answers (e.g., by ask-
ing other people to check identified features). We focus on crowd-
sourcing systems where people are paid for their work, although in
others they volunteer their work (e.g., in the Christmas Bird Count,
http://birds.audubon.org/christmas-bird-count, volunteers identify
birds across the US), while in other systems the tasks are pre-
sented as games that people do for fun (e.g., gwap.com). Ama-
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zon’s Mechanical Turk (mturk.com) can be used by the database
system to find human workers and perform the tasks, although
there are many other companies now offering services in thisspace
(CrowdFlower crowdflower.com, uTest utest.com, Microtaskmi-
crotask.com, Tagasauris tagasauris.com).

Just like a conventional database system, a crowdsourcing database
system will need to perform data processing functions like selects
and aggregates, except that now these functions may involveinter-
acting with humans. For example, to add a field “average movierat-
ing” to movie tuples involves an aggregate over the user inputs. Se-
lecting “horror movies” may involve asking humans what movies
are “horror movies.” The underlying operations (e.g., ask ahuman
if a given movie is a “horror movie” or ask a human which of two
cameras is best) have very different latency, cost and accuracy char-
acteristics than in a traditional database system. Thus, weneed to
develop effective strategies for performing such fundamental data
processing functions.

In particular, in this paper we focus on theMax (Maximum) func-
tion: The database has a set of objects (e.g., maps, photographs,
Facebook profiles), where conceptually each object has an intrinsic
“quality” measure (e.g., how useful is a map for a specific human-
itarian mission, how well does a photo describe a given restaurant,
how likely is it that a given Facebook profile is the actual profile of
Lady Gaga). Of the set of objects, we want to find the one with the
largest quality measure. While there are many possible underlying
types of human operators, in this paper we focus on a pairwiseop-
erator: a human is asked to compare two objects and returns the one
object he thinks is of higher quality. We call this type of pairwise
comparison avote.

If we ask two humans to compare the same pair of objects they
may give us different answers, either because they makes mistakes
or because their notion of quality is subjective. Either way, the
crowdsourcing algorithm may need to submit the same vote to mul-
tiple humans to increase the likelihood that its final answeris cor-
rect (i.e. that the reported max is indeed the object with thehighest
quality measure). Of course, executing more votes increases the
cost of the algorithm, either in running time and/or in monetary
compensation given to the humans for their work.

There are two types of algorithms for the Max Problem: struc-
tured and unstructured. With a structured approach, a regular pat-
tern of votes is set up in advance, as in a tournament. For example,
if we have 8 objects to consider, we can first compare 1 to 2, 3 to
4, 5 to 6 and 7 to 8. After we get all results, we compare the 1-2
winner to the 3-4 winner and the 5-6 winner to the 7-8 winner. In
the third stage, we compare the two winners to obtain the overall
winner, which is declared the max. If we are concerned about vot-
ing errors, we can repeat each vote an odd number of times and use
the consensus result. For instance, three humans can be asked to do



the 1-2 comparison, and the winner of this comparison is the object
that wins in 2 or 3 of the individual votes.

While structured approaches are very effective in predictable en-
vironments (such as in a sports tournament), they are much harder
to implement in a crowdsourcing database system, where humans
may simply not respond to a vote, or may take an unacceptably long
time to respond. In our 8-object example, for instance, after asking
for the first 4 votes, and waiting for 10 minutes, we may have only
the answers to the 1-2 and 5-6 comparisons. We could then re-issue
the 3-4 and 7-8 comparisons and just wait, but perhaps we should
also try comparing the winner of 1-2 with the winner of 5-6 (which
was not in our original plan).

The point is that even if we start with a structured plan in mind,
because of incomplete votes we will likely be faced with an un-
structured scenario: some subset of the possible votes havecom-
pleted (some with varying numbers of repetitions), and we have to
answer one or both of the following questions:
• Judgment Problem: what is our current best estimate for the

overall max winner?
• Next Votes Problem: if we want to invoke more votes, which

are the most effective ones to invoke, given the current stand-
ing of results?

In this paper we focus precisely on these two problems, in an un-
structured setting that is much more likely to occur in a crowdsourc-
ing database system. Both of these problems are quite challenging
because there may be many objects in the database, and because
there are many possible votes to invoke. An additional challenge
is contradictory evidence. For instance, say we have three objects,
and one vote told us 1 was better than 2, another vote told us that
2 was better than 3, and a third one told us that 3 was better and1.
What is the most likely max in a scenario like this one where evi-
dence is in conflict? Should we just ignore “conflicting” evidence,
but how exactly do we do this? Yet another challenge is the lack of
evidence for some objects. For example, say our evidence is that
1 is better than objects 2, 3 and 4. However, there are two addi-
tional objects, 5 and 6, for which there is no data. If we can invoke
one more vote, should we compare the current favorite, object 1,
against another object to verify that it is the max, or shouldwe at
least try comparing 5 and 6, for which we have no information?

The Judgment Problem draws its roots from the historicalpaired
comparisonsproblem, wherein the goal is to find the best rank-
ing of objects when noisy evidence is provided [20, 29, 12]. The
problem is also related to theWinner Determinationproblem in the
economic and social choice literature [6], wherein the goalis to find
the best object via avoting rule: either by finding a “good” rank-
ing of objects and then returning the best object(s) in that ranking,
or by scoring each object and returning the best scoring object(s).
As we will see in Section 2, our solution to the Judgment Problem
differs from both of these approaches. As far as we know, no coun-
terpart of the Next Votes problem exists in the literature. We survey
related work in more detail in Section 4.

In summary, our contributions are as follows:
• We formalize the Max Problem for a crowdsourcing database

system, with its two subproblems, the Judgment and the Next
Votes problems.
• We propose a Maximum Likelihood (ML) formulation of

the Judgment Problem, which finds the object that is prob-
abilistically the most likely to be the maximum. We show
that computing the Maximum Likelihood object isNP-Hard,
while computation of the probabilities involved is#P-Hard.
To the best of our knowledge, our ML formulation is the first
formal definition and analysis of the Judgment Problem.
• We propose and evaluate four different heuristics for the Judg-

ment Problem, some of which are adapted from solutions for
sorting with noisy comparisons. For small problem settings,
we compare the heuristic solutions to those provided by ML.
When there is only a small number of votes available, we
show that one of our methods, a novel algorithm based on
PageRank, is the best heuristic.
• We provide the first formal definition of the Next Votes Prob-

lem, and again, propose a formulation based on ML. We
show that selecting optimal additional votes isNP-Hard, while
computation of the probabilities involved is#P-Hard.
• We propose four novel heuristics for the Next Votes Prob-

lem. We experimentally evaluate the heuristics, and when
feasible, compare them to the ML formulation.

2. JUDGMENT PROBLEM

2.1 Problem Setup
Objects and Permutations: We are given a setO of n objects
{o1, ..., on}, where each objectoi is associated with a latentquality
ci, with no two c’s being the same. Ifci > cj , we say thatoi
is greater than oj . Let π denote a permutation function, e.g., a
bijection fromN to N , whereN = {1, ..., n}. We useπ(i) to
denote therank, or index, of objectoi in permutationπ, andπ−1(i)
to denote the object index of theith position in permutationπ. If
π(i) < π(j), we say thatoi is rankedhigherthanoj in permutation
π. Since no two objects have the same quality, there exists atrue
permutationπ∗ such that for any pair(i, j), if π∗(i) < π∗(j), then
cπ∗(i) > cπ∗(j). Note that throughout this paper, we use the terms
permutationandranking interchangeably.

Voting: We wish to develop analgorithm to find the maximum
(greatest) object in setO, i.e., to findπ∗−1(1). The only type of op-
eration or information available to an algorithm is a pairwisevote:
in a vote, a human worker is shown two objectsoi and oj , and
is asked to indicate the greater object. We assume that all work-
ers vote correctly with probabilityp (0.5 < p ≤ 1), wherep is a
quantity indicating average worker accuracy. We also assume p is
unaffected by worker identities, object values, or worker behavior.
In other words, each vote can be viewed as a independent Bernoulli
trial with success probabilityp. Note that in general the valuep is
not available to the algorithm, but we may use it for evaluating
the algorithm. However, for reference we do study two algorithms
wherep is known.

Goals: No matter how the algorithm decides to issue vote requests
to workers, at the end it must select what it thinks is the maximum
object based on the evidence, i.e., based on the votes completed
so far. We start by focusing on thisJudgment Problem, which we
define as follows:

PROBLEM 1 (JUDGMENT). GivenW , predict the maxi-
mum object inO, π∗−1(1).

In Section 3, we then address the other important problem, i.e.,
how to request additional votes (in case the algorithm decides it is
not done yet). In general, a solution to the Judgment Problemis
based upon ascoring functions. The scoring function first com-
putes ascores(i) for each objectoi, with the scores(i) represent-
ing the “confidence” that objectoi is the true maximum. As we
will see, for some strategies scores are actual probabilities, for oth-
ers they are heuristic estimates. Then, the strategy selects the object
with the largest score as its answer.

Representation:We represent the evidence obtained as ann × n
vote matrixW , with wij being the number of votes foroj being
greater thanoi. Note thatwii = 0 for all i. No other assumptions
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Figure 1: How should these objects be ranked? Vote matrix (left) and
equivalent graph representation (right). Arc weights indicate number of
votes.

are made about the structure of matrixW . The evidence can also
be viewed as a directed weighted graphGv = (V,A), with the
vertices being the objects and the arcs representing the vote out-
comes. For each pair(i, j), if wij > 0, arc (i, j) with weight
wij is present inA. For example, Figure 1 displays a sample vote
matrix and equivalent graph representation. In this example, ob-
ject 1 is calledA, object 2 isB, and so on. For instance, there is
an arc from vertex (object)B to vertexC with weight 2 because
w2,3 = 2, and there is a reverse arc fromC to B with weight 1
becausew3,2 = 1. If there are no votes (wij = 0, as fromB toA),
we can either say that there is no arc, or that the arc has weight 0.

2.2 Maximum Likelihood
Preliminaries: We first present a Maximum Likelihood (ML) for-
mulation of the Judgment Problem. We directly compute the object
that has the highest probability of being the maximum objectin O,
given vote matrixW . Assuming that average worker accuracyp
is known, the ML formulation we present is the optimal feasible
solution to the Judgment Problem.

Let π be a random variable over the set of alln! possible permu-
tations, where we assume a-priori that each permutation is equally
likely to be observed. We denote the probability of a given permu-
tationπd given the vote matrixW asP (π = πd|W ). For the ease
of exposition, we adopt the shorthandP (πd|W ) instead of writing
P (π = πd|W ). To derive the formula forP (πd|W ), we first apply
Bayes’ theorem,

P (πd|W ) =
P (W |πd)P (πd)

P (W )
=

P (W |πd)P (πd)
X

j

P (W |πj)P (πj)
(1)

From our assumption that the prior probabilities of all permutations
are equal,P (πd) = 1

n!
.

Now considerP (W |πd). Given a permutationπd, for each un-
ordered pair{i, j}, the probabilityfπd

(i, j) of observingwij and
wji is the binomial distribution probability mass function (p.m.f.):

fπd
(i, j) =

(
`

wij+wji

wij

´

pwji(1− p)wij if πd(i) < πd(j)
`

wij+wji

wji

´

pwij (1− p)wji if πd(j) < πd(i)

(2)
Note that if bothwij andwji are equal to 0, thenfπd

(i, j) =
1. Now, given a permutationπd, observing the votes involving
an unordered pair{i, j} is conditionally independent of observ-
ing the votes involving any other unordered pair. Using thisfact,
P (W |πd), the probability of observing all votes given a permuta-
tion πd is simply:

P (W |πd) =
Y

i,j:i<j

fπd
(i, j) (3)

Since we know the values of bothp andW , we can derive a for-
mula forP (πd|W ) in Equation 1. In particular, the most likely
permutation(s), is simply:

arg max
d

P (πd|W ) (4)

The permutations optimizing Equation 4 are also known asKemeny
permutationsor Kemeny rankings[9].

For example, consider the matrixW of Figure 1. We do not show
the computations here, but it turns out that the two most probable
permutations of the objects are(D,C,B,A) and (C,D,B,A),
with all other permutations having lower probability. Thisresult
roughly matches our intuition, since objectA was never voted to
be greater than any of the other objects, andC andD have more
votes in favor overB.

We can derive the formula for the probability that a given object
oj has a given rankk. Let π

−1(i) denote the position of object
i in the permutation associated with random variableπ. We are
interested in the probabilityP (π−1(k) = j|W ). Since the event
(π = πd) is disjoint for different permutationsπd, we have:

P (π−1(k) = j|W ) =
X

d:π−1

d
(k)=j

P (πd|W )

Substituting forP (πd|W ) using Equation 1 and simplifying, we
have:

P (π−1(k) = j|W ) =

X

d:π−1

d
(k)=j

P (W |πd)

X

l

P (W |πl)
(5)

Since we are interested in the objectoj with the highest proba-
bility of being rank 1, e.g.,P (π−1(1) = j|W ), we now have the
Maximum Likelihood formulation to the Judgment Problem:

ML FORMULATION 1 (JUDGMENT). Given W and p,
determine:arg maxj P (π−1(1) = j|W ).

In the example graph of Figure 1, whileC andD both have
Kemeny permutations where they are the greatest objects,D is
the more likely max over a large range ofp values. For instance,
for p = 0.75, P (π−1(1) = C|W ) = 0.36 while P (π−1(1) =
D|W ) = 0.54. This also matches our intuition, sinceC has one
vote where it is less thanB, whileD is never voted to be less than
eitherA orB.

Maximum Likelihood Strategy: Equation 5 implies that we only
need to computeP (W |πd) for each possible permutationπd, us-
ing Equation 3, in order to determineP (π−1(k) = j|W ) for all
valuesj andk. In other words, by doing a single pass through all
permutations, we can compute the probability that any object oj
has a rankk, given the vote matrixW .

We call this exhaustive computation of probabilities theMax-
imum Likelihood Strategyand use it as a baseline in our experi-
ments. Note that the ML strategy is the optimal feasible solution
to the Judgment Problem. The pseudocode for this strategy isdis-
played in Strategy 1. The strategy utilizes a ML scoring function,
which computes the score of each object ass(j) = P (π−1(1) =
j|W ). The predicted max is then the object with the highest score.
Note that the strategy can be easily adapted to compute the maxi-
mum likelihood of arbitrary ranks (not just first) over the set of all
possible permutations.

2.3 Computational Complexity



Maximum Likelihood Permutations: We begin by considering
the complexity of computing Equation 4. The problem has been
shown to beNP-Hard [31]. We briefly describe the result, before
moving on to the Judgment Problem.

Consider Equation 3. Letψ(πd,W ) denote the number of votes

inW that agree with permutationπd, e.g.ψ(πd,W ) =
X

ij:πd(j)<πd(i)

wij .

LetT (W ) denote the total number of votes inW , e.g.T = ||W ||1.
Equation 3 can be rewritten as:

P (W |πd) = Zp
ψ(πd,W )(1− p)T (W )−ψ(πd,W ) (6)

In this expression,Z is a constant. Note thatpx(1 − p)a−x is an
increasing function with respect tox, for 0.5 < p < 1 and constant
a. Therefore, maximizingP (W |πd) is equivalent to maximiz-
ingψ(πd,W ). This implies that computingarg maxi ψ(πi,W ) is
equivalent to computing the most likely permutation(s),arg maxi P (πi|W ).
ψ(·) is known as theKemeny metric, and has been well studied in
the economic and social choice literature [19]. Referring to the
example in Figure 1, the Kemeny metric is maximized by two per-
mutations of the objects,(D,C,B,A) or (C,D,B,A). For both
these permutations, the Kemeny metric is equal to2+2+1+3 = 8.
We next show that maximizing the Kemeny metric is equivalentto
solving a classicalNP-Hard problem.

Consider the directed graphGv = (V,A) representing the votes
of W (Figure 1 is an example). Theminimum feedback arc setof
Gv is the smallest weight set of arcsA

′

⊆ A such that(V,A\A
′

) is
acyclic. Equivalently, the problem can also be seen as maximizing
the weight of acyclic graph(V,A\A

′

).
Now, supposing we have a method to solve for the minimum

feedback arc set, consider a topological orderingπt of the vertices
in the resulting acyclic graph. Referring back to Equation 6, the
permutationπt maximizes the Kemeny metricpψ(π,W ). Therefore,
solving the minimum feedback arc set problem forGv is equivalent
to our original problem of finding the most likely permutation given
a set of votes. Referring back to our example in Figure 1, the mini-
mum feedback arc set is 2, equivalent to cutting arc(C,B) and one
of arcs(C,D) or (D,C).

Finding the minimum feedback arc set in a directed graph is a
classicalNP-Hard problem, implying that the problem of finding
the ML permutation given a set of votes isNP-Hard as well.

THEOREM 1. (Hardness of Maximum Likelihood Permutation) [31]
Finding the Maximum Likelihood permutation given evidenceis
NP-Hard.

Hardness of the Judgment Problem:In Section 2.2, we presented
a formulation for the Judgment Problem based on ML for finding
the object most likely to be the max (maximum) object inO. Un-
fortunately, the strategy based on that formulation was computa-
tionally infeasible, as it required computation across alln! permu-
tations of the objects inO. We now show that the optimal solution
to the problem of finding the maximum object is in factNP-Hard
using a reduction from the problem ofdetermining Kemeny win-
ners[17]. (Hudry et al. [17] actually show thatdetermining Slater
winners in tournamentsis NP-Hard, but their proof also holds for
Kemeny winners. We will describe theKemeny winnerproblem
below.) Our results and proof are novel.

THEOREM 2. (Hardness of the Judgment Problem) Finding the
maximum object given evidence isNP-Hard.

PROOF. We first describe the Kemeny winner problem. In this
proof, we use an alternate (but equivalent) view of a directed weighted

graph like Figure 1. In particular, we view weighted arcs as mul-
tiple arcs. For instance, if there is an arc from vertexA to B with
weight3, we can instead view it as3 separate edges fromA toB.
We use this alternate representation in our proof.

An arc i → j respects a permutation if the permutation hasoj
ranked higher thanoi (and does not if the permutation hasoi ranked
higher thanoj ). A Kemeny permutationis simply a permutation
of the vertices (objects), such that the number of arcs that do not
respect the permutation is minimum. There may be many such
permutations, but there always is at least one such permutation.
The starting vertex (rank 1 object) in any of these permutations is
a Kemeny winner. It can be shown that finding a Kemeny winner
is NP-Hard (using a reduction from the feedback arc set problem,
similar to the proof in Hudry et al. [17]).

We now reduce the Kemeny winner determination problem to
one of finding the maximum object. Consider a directed weighted
graphG, where we wish to find a Kemeny winner. We show that
with a suitable probabilityp, which we set, the maximum object
(i.e., the solution to the Judgment Problem) inG is a Kemeny win-
ner. As before, the probability that a certain objectoj is the maxi-
mum object is the right hand side of Equation 5 withk set to1. The
denominator can be ignored since it is a constant for allj. We set
worker accuracyp to be very close to1. In particular, we choose a
valuep such that1−p

p
< 1

n!
.

Now, consider all permutationsπd that are not Kemeny permuta-
tions. In this case, it can be shown that

X

d:πd is not Kemeny

P (W |πd) <

P (W |πs) for any Kemeny permutationπs. Thus, the objectoj that
maximizes Equation 5 (fork = 1) has to be one that is a Kemeny
winner.

To see why
X

d:πd is not Kemeny

P (W |πd) < P (W |πs) for a Ke-

meny permutationπs, notice that the left hand side is at mostn!×

P (W |π
′

d) whereπ
′

d is the permutation (not Kemeny) that has the
least number of arcs that do not respect the permutation. Note that
P (W |π

′

d) is at mostP (W |πs)×
1−p
p

, since this permutation has at
least one more mistake as compared to any Kemeny permutation.

Therefore, we have shown that, for a suitablep, the maximum
object inG is a Kemeny winner. Thus, we have a reduction from
the Kemeny winner problem to the Judgement problem. Since find-
ing a Kemeny winner isNP-Hard, this implies that finding the max-
imum object inG is NP-Hard.

#P-Hardness of Probability Computations: In addition to being
NP-Hard to find the maximum object, we can show that evaluating
the numerator of the right hand side of Equation 5 (withk = 1) is
#P-Hard, in other words: computingP (π−1(1) = j,W ) is #P-
Hard.

We use a reduction from the problem of counting the number
of linear extensions in a directed acyclic graph (DAG), which is
known to be#P-Hard.

THEOREM 3. (#P-Hardness of Probability Computation) Com-
putingP (π−1(1) = j,W ) is #P-Hard.

PROOF. A linear extension is a permutation of the vertices, such
that all arcs in the graph respect the permutation (i.e., a linear ex-
tension is the same as a Kemeny permutation for a DAG).

Consider a DAGG = (V,A). We add an additional vertexx
such that there is an arc from each of the vertices inG to x, giv-
ing a new graphG′ = (V ′, A′). We now show that computing
P (π−1(1) = x,W ) in G′ can be used to compute the number of



linear extensions inG. Notice that:

P (π−1(1) = x,W ) =

|A′|
X

i=0

aip
i(1− p)|A

′|−i

= p
|A′| ×

|A′|
X

i=0

ai(
1− p

p
)|A

′|−i (7)

whereai is the number of permutations where there arei arcs that
respect the permutation. Clearly, the number that we wish tode-
termine isa|A′|, since that is the number of permutations that cor-
respond to linear extensions. Equation 7 is a polynomial of degree
|A′| in 1−p

p
, thus, we may simply choose|A′|+ 1 different values

of 1−p
p

, generate|A′|+1 different graphsG′, and use the probabil-
ity computation in Equation 7 to create a set of|A′|+ 1 equations
involving theai coefficients. We may then derive the value ofa|A|

using Lagrange’s interpolation formula.
Since vertexx is the only maximum vertex inG′, by comput-

ing P (π−1(1) = x,W ) in G′, we count the number of linear
extensions in DAGG. Since counting the number of linear ex-
tensions in a DAG is#P-Hard, this implies that the computation of
P (π−1(1) = x,W ) inG′ is #P-Hard, which implies that the com-
putation ofP (π−1(k) = j,W ) for directed graphGv (associated
with vote matrixW ) is #P-Hard.

Strategy 1Maximum Likelihood
Require: n objects, probabilityp, vote matrixW
Ensure: ans= maximum likelihood maximum object
s[·] ← 0 { s[i] is used to accumulate the probability thati is the
maximum object}
for each permutationπ of n objectsdo
prob ← 1 {prob is the probability of permutationπ given
vote matrixW }
for each tuple(i, j) : i < j do

if π(i) < π(j) then
prob← prob×

`

wij+wji

wij

´

pwji(1− p)wij

else
prob← prob×

`

wij+wji

wji

´

pwij (1− p)wji

end if
end for
s[π−1(1)]← s[π−1(1)] + prob

end for
ans← argmaxi s[i]

2.4 Heuristic Strategies
The ML scoring function is computationally inefficient and also

requires prior knowledge ofp, the average worker accuracy, which
is not available to us in real-world scenarios. We next investigate
the performance and efficiency of four heuristic strategies, each of
which runs in polynomial time. The heuristics we present, exclud-
ing the Indegree heuristic, do not require explicit knowledge of the
worker accuracyp.

Indegree Strategy: The first heuristic we consider is an Indegree
scoring function proposed by Coppersmith et al. [11] to approx-
imate the optimal feedback arc set in a directed weighted graph
where arc weightslij , lji satisfy lij + lji = 1 for each pair of
verticesi andj. In this section, we describe how to transform our
vote matrixW to a graph where this Indegree scoring function can
be applied. Letπ(i) denote the rank, or index, of objectoi in the
permutation associated with random variableπ.

Given vote matrixW , we construct a complete graph between all
objects where arc weightslji are equal toP (π(i) < π(j)|wij , wji).
lji reflects the probability thatoi is greater thanoj given thelocal
evidencewij andwji. It is important to note that this method is a
heuristic, e.g., we computeP (π(i) < π(j)|wij , wji), rather than
P (π(i) < π(j)|W ), which requires full enumeration over alln!
permutations.

How do we compute arc weightP (π(i) < π(j)|wij , wji)?

P (π(i) < π(j)|wij , wji) =

P (wij , wji|π(i) < π(j))P (π(i) < π(j))

P (wij , wji)
(8)

Assuming that a priori all permutationsπ are equally likely,P (π(i) <
π(j)) = P (π(j) < π(i)) by symmetry. Using Equation 8 to
find expressions forP (π(i) < π(j)|wij , wji) and P (π(i) >

π(j)|wij , wji), we can derive the following:

P (π(i) < π(j)|wij , wji)

P (π(i) > π(j)|wij , wji)
=
P (wij , wji|π(i) < π(j))

P (wij , wji|π(i) > π(j))
(9)

SinceP (π(i) < π(j)|wij , wji)+P (π(j) < π(i)|wij , wji) = 1,
we can simplify Equation 9 to get the following expression:

P (π(i) < π(j)|wij , wji) =

P (wij , wji|π(i) < π(j))

P (wij , wji|π(i) < π(j)) + P (wij , wji|π(i) > π(j))
(10)

Using Equation 2,P (wij , wji|π(i) < π(j)) andP (wij , wji|π(i) <
π(j)) can be computed directly from the binomial distribution p.m.f.
Therefore, we can compute the arc weightlji = P (π(i) < π(j)|wij , wji)
needed for the Indegree scoring function. It should be clearthat
lij + lji = 1. Also, if wij andwji are both equal to zero, then both
lij andlji are computed to be 0.5.

Strategy 2Indegree
Require: n objects, probabilityp, vote matrixW
Ensure: ans= predicted maximum object
s[·]← 0
for i : 1 . . . n do

for j : 1 . . . n, j 6= i do
s[i]← s[i] + lji { lji = P (π(i) < π(j)|wij , wji)}

end for
end for
ans← argmaxi s[i]

The Indegree scoring function, displayed in Strategy 2, computes
the score of objectoj as: s(j) =

P

i
lij . Intuitively, vertices with

higher scores correspond to objects which have compared favorably
to other objects, and hence should be ranked higher. The predicted
ranking has been shown to be a constant factor approximationto
the feedback arc set for directed graphs where all arcs(i, j) are
present andlij + lji = 1 [11]. The running time of this heuristic is
dominated by the time to do the final sort of the scores.

Let us walk through the example graph in Figure 1. First, for
those pairs of vertices that do not have any votes between them,
we havelAC = 0.5, lCA = 0.5, lAD = 0.5, andlDA = 0.5. By
symmetry,lCD = 0.5 and lDC = 0.5. Given a value ofp, we
use Equation 10 to compute the rest of the arc weights. Forp =
0.55, we havelAB = 0.599, lBA = 0.401, lBC = 0.55, lCB =
0.45, lBD = 0.646, andlDB = 0.354. With these computed arc
weights, we obtain the scores:s(A) = 1.401, s(B) = 1.403, s(C) =
1.55, ands(D) = 1.65, generating a predicted ranking of(D,C,B,A),



with objectD being the predicted maximum object. Note that ifp

is larger, e.g.p = 0.95, the Indegree heuristic predicts the same
ranking.

Local Strategy: The Indegree heuristic is simple to compute, but
only takes into account local evidence. That is, the score ofobject
oi only depends on the votes that includeoi directly. We now con-
sider a Local scoring function, adapted from a heuristic proposed
by David [13], which considers evidence two steps away fromoi.
This method was originally proposed to rank objects in incomplete
tournaments with ties. We adapted the scoring function to our set-
ting, where there can be multiple comparisons between objects, and
there are no ties in comparisons.

This heuristic is based on the notion of wins and losses, defined
as follows: wins(i) =

P

j
wji and losses(i) =

P

i
wij . For

instance, in Figure 1, vertexB has 3 wins and 5 losses.
The scores(i) has three components. The first is simplywins(i)−

losses(i), reflecting the net number of votes in favor ofoi. For
vertexB, this first component would be3 − 5 = −2. Since this
first component does not reflect the “strength” of the objectsoi was
compared against, we next add a “reward”: for eachoj such that
wji > wij (i has net wins overj), we addwins(j) to the score
of oi. In our example,B only has net wins overA, so we reward
B with wins(A) (which in this case is zero). On the other hand,
sinceC beat outB, thenC gets a reward ofwins(B) = 3 added
to its score. Finally, we “penalize”s(i) by subtractinglosses(j)
for eachoj that overall beatoi. In our example, we subtract from
s(B) both losses(C) = 2 and losses(D) = 1. Thus, the final
scores(B) is−2 plus the reward minus the penalty, i.e.,s(B) =
−2 + 0− 3 = −5.

More formally, scores(i) is defined as follows:

s(i) = wins(i) − losses(i) +
X

j

[1(wji > wij)wins(j)]

−
X

j

[1(wij > wji)losses(j)] (11)

Strategy 3Local
Require: n objects, vote matrixW
Ensure: ans= predicted maximum object
wins[·], losses[·], s[·]← 0 {objects are ranked bys[·]}
for each tuple(i, j) : do
wins[j]← wins[j] + wij
losses[i]← losses[i] + wij

end for
for i : 1 . . . n do
s[i]← wins[i]− losses[i] {addwins− losses to s}
for j : 1 . . . n, j 6= i do

if wij < wji then
s[i]← s[i] + wins[j] {add reward}

else ifwij > wji then
s[i]← s[i]− losses[j] {subtract penalty}

end if
end for

end for
ans← argmaxi s[i]

Having computeds(·), we sort all objects by decreasing order
of s. The resulting permutation is our predicted ranking, with the
vertex having largests being our predicted maximum object. An
implementation of the method is displayed in Strategy 3.

To complete the example of Figure 1, Strategy 3 computes the
following scores:s(A) = 0−2−5 = −7, s(B) = 3−5−3 = −5,

s(C) = 3− 2 + 3 = 4, ands(D) = 4− 1+ 3 = 6. The predicted
ranking is then(D,C,B,A), with objectD being the predicted
maximum object.

PageRank Strategy:Both the Indegree and Local heuristics use
only information one or two steps away to make inferences about
the objects ofO. We next consider a global heuristic scoring func-
tion inspired by the PageRank [26] algorithm. The general idea be-
hind using a PageRank-like procedure is to utilize the votesinW as
a way for objects to transfer “strength” between each other.The use
of PageRank to predict the maximum has been previously consid-
ered [5] in the literature. Our contribution is a modified PageRank
to predict the maximum object inO, which in particular, can handle
directed cycles in the directed graph representingW .

Consider again the directed graphGv representing the votes of
W (Figure 1 is an example). Letd+(i) to denote the outdegree of
vertexi in Gv , e.g.d+(i) =

P

j
wij . If d+(i) = 0, we say thati

is asinkvertex.
Let prt(i) represent the PageRank of vertexi in iterationt. We

initialize each vertex to have the same initial PageRank, e.g.,pr0(·) =
1
n

. In each iterationt+ 1, we apply the following update equation
to each vertexi:

prt+1(i) =
X

j

wji

d+(j)
prt(j) (12)

For each iteration, each vertexj transfers all its PageRank (from
the previous iteration) proportionally to the other verticesi whom
workers have indicated may be greater thanj, where the propor-
tion of j’s PageRank transferred toi is equal to

wji

d+(j)
. Intuitively,

prt(i) can be thought as a proxy for the probability that objectoi
is the maximum object inO (during iterationt).

What happens to the PageRank vector after performing many
update iterations using Equation 12? Considering the strongly con-
nected components (SCCs) ofGv, let us define aterminalSCC to
be a SCC whose vertices do not have arcs transitioning out of the
SCC. After a sufficient number of iterations, the PageRank prob-
ability mass inGv becomes concentrated in the terminal SCCs
of Gv , with all other vertices outside of these SCCs having zero
PageRank [4]. In the context of our problem, these terminal SCCs
can be thought of as sets of objects which are ambiguous to order.

Our proposed PageRank algorithm is described in Strategy 4.
How is our strategy different from the standard PageRank algo-
rithm? The original PageRank update equation is:

prt+1(i) =
1− d

n
+ d

X

j

wji

d+(j)
prt(j))

Comparing the original equation and Equation 12, the primary dif-
ference is that we use a damping factord = 1, e.g. we remove jump
probabilities. PageRank was designed to model the behaviorof a
random surfer traversing the web, while for the problem of ranking
objects, we do not need to model a random jump vector.

A second difference between our modified PageRank and the
original PageRank is that prior to performing any update iterations,
for each sink vertexi, we setwii equal to 1 inW . In our set-
ting, sinks correspond to objects which may be the maximum object
(e.g., no worker voted thatoi is less than another object). By set-
tingwii to 1 initially, from one iteration to the next, the PageRank
in sink i remains in sinki. This allows PageRank to accumulate
in sinks. Contrast this with the standard PageRank methodology,
where when a random surfer reaches a sink, it is assumed that (s)he
transitions to all other vertices with equal probability.

Finally, a caveat to our PageRank strategy is that the PageRank
vector (pr(·) in Strategy 4) may not converge for some vertices



Strategy 4PageRank
Require: n objects, vote matrixW , K iterations
Ensure: ans= predicted maximum object

constructGv = (V, A) from W
computed+[·] for each vertex {compute all outdegrees}
for i : 1 . . . n do

if d+[i] == 0 then
wii ← 1

end if
end for
pr0[·]←

1
n

{pr0 is the PageRank vector in iteration 0}
for k : 1 . . . K do

for i : 1 . . . n do
for j : 1 . . . n, j 6= i do

prk[i]← prk[i] +
wji

d+[j]
prk−1[j]

end for
end for

end for
computeperiod[·] of each vertex using final iterations ofpr[·]
for i : 1 . . . n do

s[i]← 0 { s[·] is a vector storing average PageRank}
for j : 0 . . . period[i]− 1 do

s[i]← s[i] + prK−j [i]
end for
s[i]←

s[i]
period[i]

end for
ans← argmaxi s[i]

in terminal SCCs. To handle the oscillating PageRank in terminal
SCCs, we execute our PageRank update equation (Equation 12)for
a large number of iterations, denoted asK in Strategy 4. Then, we
examine the final iterations, say final 10%, of the PageRank vector
to empirically determine theperiod of each vertex, where we de-
fine the period as the number of iterations for the PageRank value
of a vertex to return to its current value. In practice, we findthat
running PageRank forK iterations, whereK = O(n), is sufficient
to detect the period of nearly all vertices in terminal SCCs.For
example, consider a graph among 3 objectsA,B,C with 3 arcs:
(A,B), (B,C), and(C,B). All vertices initially have1

3
PageR-

ank probability. After 1 iteration, the PageRank vector is(0, 2
3
, 1

3
).

After 2 iterations, the PageRank vector is(0, 1
3
, 2

3
). And so on. In

this example, object B and C each have periods of 2.
With the periods computed for each vertex, we compute anav-

eragePageRank value for each vertex over its period. This aver-
age PageRank is used as the scoring functions(·) for this strat-
egy. After the termination of PageRank, we sort the verticesby
decreasing order ofs(·), and predict that the vertex with maximum
average PageRank corresponds to the maximum object inO. Note
that our PageRank heuristic is primarily intended to predict a maxi-
mum object, not to predict a ranking of all objects (as many objects
will end up with no PageRank). However, for completeness, when
evaluating PageRank in later experiments, we still do consider the
predicted ranking induced by PageRank. The details of our imple-
mentation are displayed in Strategy 4.

To illustrate our PageRank heuristic, consider again the example
in Figure 1. There are 2 SCCs in the graph:(A) and(B,C,D),
with (B,C,D) being a terminal SCC. Each of the 4 vertices is ini-
tialized with 0.25 PageRank. After the first iteration, the PageRank
vector is (0, 0.375, 0.35, 0.275). After the second iteration, the
PageRank vector is(0, 0.375, 0.35, 0.275). After ~20 iterations,
the PageRank vector oscillates around(0, 0.217, 0.435, 0.348). With
a sufficiently large number of iterations and an appropriately cho-
sen convergence threshold, the heuristic determines a period of
1 for both SCCs and computes an average PageRank vector of
(0, 0.217, 0.435, 0.348). The PageRank heuristic then predicts ob-

Heuristic Prediction

ML (D,C,B,A) and(C,D,B,A)
Indegree (D,C,B,A)

Local (D,C,B,A)
PageRank Maximum object =C

Iterative (C,D,B,A), (C,D,A,B), (D,C,B,A), or
(D,C,A,B)

Table 1: Predictions using each heuristic for Figure 1.

jectC to be the maximum object inO.

Iterative Strategy: We next propose an Iterative heuristic strategy
to determine the maximum object inO. The general framework is
the following:

1. Place all objects in a set.
2. Rank the objects in the set by a scoring metric.
3. Remove the lower ranked objects from the set.
4. Repeat steps 3 and 4 until only one object remains.
There are two parameters we can vary in this framework: the

scoring metric and the number of objects eliminated each itera-
tion. Let us define thedif(i) metric of objectoi to be equal to
wins(i) − losses(i). An implementation of the Iterative strategy
using thedif metric is displayed in Strategy 5. In our particular im-
plementation, we emphasize computational efficiency and remove
half of the remaining objects each iteration. The Iterativestrat-
egy relies upon the elimination of lower ranked objects before re-
ranking higher ranked objects. With each iteration, as moreobjects
are removed, thedifs of the higher ranked objects separate from
thedifs of the lower ranked objects. Basically, by removing lower
ranked objects, the strategy is able to more accurately rankthe re-
maining set of objects. The strategy can be thought of as iteratively
narrowing in on the maximum object.

It is important to note that other scoring metrics can be usedwith
this Iterative strategy as well. For example, by iteratively ranking
with the Local heuristic, we were able to achieve (slightly)better
performance than the simpledif metric. Our method is similar to
the Greedy Order algorithm proposed by Cohen et al. [7], who con-
sidered a problem related to feedback arc set. Our strategy differs
in that it is more general (e.g., it can utilize multiple metrics), and
our strategy can be optimized (e.g., if we eliminate half of the ob-
jects each iteration, we require only a logarithmic number of sorts,
as opposed to a linear number).

The Iterative strategy can also be viewed as a scoring function
s(·), like the prior heuristics we have examined. Denoted ass[·]
in Strategy 5, we can assign each object a score equal to the it-
eration number in which it was removed from setT . Using this
scoring functions(·), the predicted maximum object is then simply
argmaxi s(i).

Returning to the example graph in Figure 1, the Iterative heuris-
tic first computes thedif metric for each object:dif(A) = −2,
dif(B) = −2, dif(C) = 1 anddif(D) = 3. The objects are
then placed in a set and sorted bydif . In the first iteration, objects
A andB are assigned ranks 3 and 4 and removed from the set.
Then,dif is recomputed among all remaining objects in the set,
dif(C) = 0 anddif(D) = 0. In the second iteration, either object
C orD is removed and assigned rank 2. In the third iteration, the
remaining object is removed and assigned rank 1. Therefore,the
predicted ranking of the Iterative heuristic is equally likely to be
(C,D,B,A), (C,D,A,B), (D,C,B,A), or (D,C,A,B), with
the predicted maximum object of the heuristic being objectC orD
with equal probability.

To summarize, Table 1 displays the predictions for ML and our
four heuristics for the example displayed in Figure 1. How can we
determine which heuristic strategy is superior to the others?
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Figure 3: Precision at 1 (P@1) versus Edge Coverage. 100 objects. p=0.55 (left), p=0.75 (middle), p=0.95 (right).

Strategy 5Iterative
Require: n objects, vote matrixW
Ensure: ans= predicted maximum object

dif [·]← 0 {dif [·] is the scoring metric}
for i : 1 . . . n do

for j : 1 . . . n, j 6= i do
dif [j]← dif [j] + wij ; dif [i]← dif [i]−wij

end for
end for
initialize setQ {which stores objects}
for i : 1 . . . n do

Q← Q ∪ i
end for
while |Q| > 1 do

sort objects inQ by dif [·]

for r : (
|Q|
2

+ 1) . . . |Q| do
remove objecti (with rankr) from Q
for j : j ∈ Q do

if wij > 0 then
dif [j]← dif [j]− wij ; dif [i]← dif [i] + wij

end if
if wji > 0 then

dif [i]← dif [i]− wji; dif [j]← dif [j] + wji
end if

end for
end for

end while
ans← S[1] {S[1] is the final object inS}
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Figure 2: Comparison of ML and heuristics. Prediction performance ver-
sus Edge Coverage. 5 objects, p=0.75. P@1 (left), MRR (right).

2.5 Experiments
In this section, we experimentally compare our heuristic strate-

gies: Indegree (DEG), Local (LOC), PageRank, (PR), and Itera-
tive (ITR). We also compare them with the Maximum Likelihood
(ML) Strategy, which we consider the best possible way to select
the maximum. However, since ML is computationally very ex-
pensive, we only do this comparison on a small scenario. For our
experiments, we synthetically generate problem instances, varying
: n (the number of objects inO), v (the number of votes we sample
for W ), andp (average worker accuracy). We prefer to use syn-
thetic data, since it lets us study a wide spectrum of scenarios, with
highly reliable or unreliable workers, and with many or few votes.

In our base experiments, we vary the number of sampled votes
v, from 0 to 5n(n − 1) and vary worker accuracyp from 0.55 to
0.95. As a point of reference, we refer ton(n−1)

2
votes asv = 1x

Edge Coverage, e.g. each pair of objects is sampled approximately

once. So5n(n − 1) votes is equivalent tov = 10x Edge Coverage
in our experiments.

Each data point (givenn, p, v values) in our results graphs is
obtained from 5,000runs. Each run proceeds as follows: We ini-
tializeW as ann× n null matrix and begin with an arbitrarytrue
permutationπ∗ of the objects inO. LetU denote the set of all tu-
ples(i, j) wherei 6= j. We randomly samplev tuples fromU with
replacement. After sampling a tuple(i, j), we simulate the human
worker’s comparison of objectsoi andoj . If π∗(i) < π∗(j), with
probability p, we incrementwji, and with probability1 − p, we
incrementwij . If π∗(j) < π∗(i), with probabilityp, we increment
wij , and with probability1− p, we incrementwji.

For each generated matrixW in a run, we apply each of our
heuristic strategies to obtain predicted rankings of the objects in
O. Comparing the predicted ranking withπ∗ we record both (a)
a “yes” if the predicted maximum agrees with the true maximum,
and (b) reciprocal rank, the inverse rank of the true maximumob-
ject in the predicted ranking. Finally, after all runs complete, we
compute (a) Precision at 1 (P@1), the fraction of “yes” casesover
the number of runs, and (b) the Mean Reciprocal Rank (MRR), the
average reciprocal rank over all runs.

As a first experiment, we consider the prediction performance
of Maximum Likelihood (ML) and the four heuristics for a set of 5
objects withp = 0.75, displayed in Figure 2. We choose a small set
of objects, so that ML can be computed. Looking at Figure 2(left),
we find that as the number of votes sampled increases, the P@1 of
all heuristics (excluding PageRank) increase in a concave manner,
approaching a value of 0.9 for 10x Edge Coverage. In other words,
if 5n(n−1) votes are uniformly sampled, the heuristics can predict
the maximum object 90% of the time, even though average worker
accuracy is 0.75. Similar prediction curves measuring MRR are
displayed in Figure 2(right).

ML has better performance than all the four heuristics.

As expected, ML performs the best in Figure 2, but recall that
ML requires explicit knowledge ofp, and it is computationally very
expensive. Still, the ML curve is useful, since it tells us how far the
heuristics are from the optimal feasible solution (ML). Also, note
that PageRank (PR) performs poorly in Figure 2, indicating that
PageRank is poor when the number of objects is small.

Iterative is the best of the four heuristics when the number
of votes sampled isn(n−1)

2
, e.g. 1x Edge Coverage.

For a larger experiment, we consider the problem of prediction
for n = 100 objects in Figure 3. ML is necessarily omitted from
this experiment. Looking at the graphs, we first note that theIt-
erative (ITR) heuristic performs significantly better thanthe other
heuristics, particularly whenp = 0.55 or p = 0.75. This is best
demonstrated by Figure 3(middle), which shows that forp = 0.75
and 10x Edge Coverage, the Iterative heuristic has a P@1 of over
0.9, whereas the second best heuristic, Indegree (DEG), only has
a P@1 of approximately 0.5. Looking at the middle graph again,
note how the performance gap between the Iterative heuristic and
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the other heuristics widens as the Edge Coverage increases from 1x
to 5x. The strength of the Iterative strategy comes from its abil-
ity to leverage the large number of redundant votes, in orderto
iteratively prune out lower-ranked objects until there is apredicted
maximum. The strategy is robust even when worker accuracy is
low. When average worker accuracy is high, Figure 3(right),the
Iterative heuristic still is the heuristic of choice, although the per-
formance gap between the Iterative and Indegree or Local (LOC)
heuristics decreases to a minimal amount, as the number of votes
sampled becomes very large.

PageRank is a poor heuristic when worker accuracy is low.
However, when worker accuracy is reasonable, PageRank is
quite effective, even when the number of votes is low.

We next focus upon the performance of the PageRank (PR) heuris-
tic. Forp = 0.75 andp = 0.95, the PageRank heuristic’s predic-
tion curve crosses the prediction curves for the Indegree (DEG)
and Local (LOC) heuristics. This is an indication that the PageR-
ank heuristic is quite effective when the number of votes is low, but
is unable to utilize the information from additional votes when the
number of votes is large. We also observe the poor performance of
PageRank whenp = 0.55, in Figure 3(left), indicating that PageR-
ank is not a suitable heuristic when worker accuracy is low. Fi-
nally, note that the Indegree and Local heuristics perform similarly
across all worker accuracies. This indicates that prior knowledge
of worker accuracyp, which the Indegree heuristic requires, is not
necessary to perform good prediction if a more sophisticated scor-
ing function, such as the Local heuristic, is used.

Over various worker accuracies, Iterative is the best heuris-
tic, followed by PageRank, Local and Indegree.

From the prior experiments, we see that prediction performance
for each strategy varies greatly with respect to the averageworker
accuracyp. We next directly investigate prediction performance
versus worker accuracy for a fixed 1x Edge Coverage. As shown
in Figure 4, we find that for this fixed Edge Coverage, the Itera-
tive (ITR) strategy performs the best, followed by PageRank(PR),
then the Local (LOC) and Indegree (DEG) heuristics. As expected,
prediction performance increases with worker accuracy across all
strategies. In particular, note the large slope of the Iterative and
PageRank prediction curves, as compared to the Local and Inde-
gree prediction curves, which are near identical.

PageRank is the best of the four heuristics when there are
few votes and worker accuracy is high.

All experiments considered thus far examine prediction when the
number of votes is an order of magnitude larger than the number of
objects. For a more difficult scenario, we examine prediction per-
formance when the number of votes is approximately the same as
the number of objects. Figure 5 displays prediction performance
for 100 objects when the number of votes is varied from 20 to 200
andp = 0.95. We observe that PageRank (PR) has the highest
prediction performance among the four heuristics. Conducting sev-
eral other experiments, we find that, so long as worker accuracy is
high, PageRank facilitates good prediction, even when the number
of votes is low relative to the number of objects. This fact will prove
useful when we consider the problem of selecting which additional
votes to request, given an initial sparse vote graph.

From our experiments regarding prediction performance, wecon-
clude that Iterative (ITR) is the strategy of choice when evaluating
a large number of votes (relative to the number of objects), whereas
PageRank is the preferred heuristic when evaluating a smallnum-
ber of votes.

3. NEXT VOTES PROBLEM
We now consider the second half of the Max Problem, the Next

Votes Problem. Beginning with an initial vote matrixW , if we wish
to submit additional vote requests to a crowdsourcing marketplace,
which additional votes (i.e., comparisons between pairs ofobjects)
should be requested to augment our existing vote matrixW , and
improve our prediction of the maximum object? In particular, we
assume that we are given a vote budget ofb additional votes that
may be requested. There are two ways in which we can use this
vote budget: (a) an adaptive strategy, where we submit some initial
votes, get some responses, then submit some more, get more re-
sponses, and so on, or (b) a one-shot strategy, where we submit all
votes at once. In this paper, we consider a one-shot strategywith
a vote budget ofb. This strategy is more relevant in a crowdsourc-
ing setting since the latency of crowdsourcing is high. Oncethe
responses for these vote requests are received, we assume that the
entire evidence thus far is our new vote matrixW ′. Note that we
can iteratively submit batches of votes to improve our prediction of
the maximum object. As before, we assume that the response to
each vote is i.i.d. correct with probabilityp. We define the Next
Votes Problem as follows:

PROBLEM 2 (NEXT VOTES). Givenb,W , selectb addi-
tional votes and predict the maximum object inO, π∗−1(1).

3.1 Maximum Likelihood
We first present a Maximum Likelihood (ML) formulation of the

selection of votes for the Next Votes Problem; we directly compute
the multiset of votes which most improves the prediction of the
maximum object inO. Assuming that average worker accuracyp is
known, the ML vote selection formulation we present is the optimal
feasible solution to the Next Votes Problem. Beforing presenting
the ML formulation, we first provide some definitions needed for
the Next Votes Problem.
Vote and Answer Multisets: We represent a potential vote (com-
parison) between objectsoi andoj as a unordered pair{oi, oj}.
Given a vote budgetb, all possible multisetsQ of b votes are al-
lowed (note that repetition of votes is allowed). For a potential vote
{oi, oj}, we define an answer to be a tuple({oi, oj}, ox), where the
first element of the tuple is an unordered pair, and the secondele-
ment is one of the objects in the pair indicating the human worker’s



answer (e.g.,x = i if the worker states thatoi is greater thanoj , or
x = j otherwise).

For each vote multisetQ, we define an answer multiseta ofQ to
be a multiset of answer tuples, where there is a one-to-one mapping
from each unordered pair inQ to an answer tuple ina. Note that
each vote is answered (independently) with probabilityp. As an
example, ifQ = {{oi, oj}, {ok, ol}}, a possible answer multiseta
that could be received from the workers is{({oi, oj}, oi),
({ok, ol}, ok)}. Note that for a multiset ofb votes, there are2b pos-
sible answer multisets. LetA(Q) denote the multiset of all possible
answer multisets ofQ.

Having defined vote and answer multisets, we next consider the
probability of receiving an answer multiset givenW , then explain
how to compute the confidence of the maximum object having re-
ceived an answer multiset, before finally presenting the ML vote
selection strategy.

Probabilities of Multisets and Confidences: Suppose that we
submitted vote multisetQ and received answer multiseta from the
crowdsourcing marketplace. LetP (a|W ) denote the probability of
observing an answer multiseta for Q, given initial vote matrixW .
We have the following:

P (a|W ) =
P (a ∧W )

P (W )
(13)

wherea∧W is the new vote matrix formed by combining the votes
of a andW .

Our estimate for how well we are able to predict the maximum
object inO is then the probability of the maximum object, given
the votes of our new vote matrix, i.e.,a∧W . We denote this value
byPmax(a∧W ), i.e., this value is our confidence in the maximum
object. The computation, based upon Equation 5, is the following:

Pmax(a ∧W ) = max
i
P (π−1(1) = i|a ∧W )

This simplifies to give:

Pmax(a ∧W ) =
maxi P (π−1(1) = i, a ∧W )

P (a ∧W )
(14)

Maximum Likelihood Strategy: We can now define the Maxi-
mum Likelihood formulation of the Next Votes Problem. We wish
to find the multisetQ of b votes such that, on average over all pos-
sible answer multisets forQ (and weighted by the probability of
those answer multisets), our confidence in the prediction ofthe
maximum object is greatest.

In other words, we want to find the multiset that maximizes:
X

a∈A(Q)

P (a|W )× Pmax(a ∧W )

which, on using Equations 13 and 14, simplifies to:

1

P (W )
×

X

a∈A(Q)

max
i
P (π−1(1) = i, a ∧W )

SinceP (W ) is a constant, independent ofQ, we have:

ML FORMULATION 2 (NEXT VOTES). Given b,W ,
find the vote multisetQ, |Q| = b, that maximizes

X

a∈A(Q)

max
i
P (π−1(1) = i, a ∧W ) (15)

Let score(Q) be the value in Equation 15. We now have an ex-
haustive strategy to determine the best multisetQ: computescore(·)
for all possible multisets of sizeb, and then choose the multiset with

the highest score. Although this strategy is the optimal feasible so-
lution to the Next Votes Problem, it is also computationallyinfea-
sible, since a single iteration of ML itself requires enumeration of
all n! permutations of the objects inO. Additionally, knowledge
of worker accuracyp is required for ML vote selection. This leads
us to develop our own vote selection and evaluation framework en-
abling more efficient heuristics.

3.2 Computational Complexity
As in the Judgment Problem, the Next Votes Problem also turns

out to beNP-Hard, while the computation of the probabilities in-
volved also turns out to be#P-Hard. While the proofs use reduc-
tions from similar problems, the details are quite different.

Hardness of the Next Votes Problem:We first show that the ML
formulation for the Next Votes Problem isNP-Hard, implying that
finding the optimal set of next votes to request is intractable.

THEOREM4 (HARDNESS OFNEXT VOTES). Finding the vote
multisetQ that maximizes

P

a∈A(Q) maxi P (π−1(1) = i, a∧W )

is NP-Hard, even for a single vote.

PROOF. (Sketch) Our proof for the Next Votes problem uses
a reduction from the sameNP-Hard problem described in Sec-
tion 2.3, i.e., determining Kemeny winners.

We are given a graphGwhere we wish to find a Kemeny winner.
We add an extra vertexv to this graph to create a new graph,G′,
wherev does not have any incoming or outgoing arcs. By defini-
tion, v is a Kemeny winner inG′, since trivially,v can be placed
anywhere in the permutation without changing the number of arcs
that are respected. Therefore, there are at least two Kemenywin-
ners inG′. Recall, however, that our goal is to return a Kemeny
winner inG′, not inG.

Now, consider the solution to the Next Votes problem onG′,
where an additional vote is requested. We need to show that the
two vertices returned by the Next Votes problem are both Kemeny
winners inG. Let the two vertices bex, y. As before, recall that

P (π−1(1) = i, a ∧W ) =
X

π:i wins

P (π)P (W ∧ a|π)

IgnoringP (π), which is a constant, we have two terms:

F = max
i

X

π:i wins

P (W ∧ x > y|π)+max
i

X

π:i wins

P (W ∧ y > x|π)

Now consider Kemeny permutations ofW . Let the set of Kemeny
winners beS, and let the number of Kemeny permutations begin-
ning with each of the winners bes1 ≥ s2 ≥ . . . sn. We also let
the probabilityp be very close to1 so that only Kemeny permuta-
tions form part ofF . If we choose two Kemeny winners asx and
y, the expressionF can be as large as(s1 + s2) × P , whereP is
the probability corresponding to one Kemeny permutation. On the
other hand, if both ofx andy are not Kemeny winners, then we can
show thatF < (s1 + s2) × P (since the constraint ofx < y and
y > x eliminates some non-zero number of permutations from the
right hand side of the expression.) Now it remains to be seen if x
may be a Kemeny winner whiley is not. Clearly, the first term can
be as big ass1P . It remains to be seen if the second term can be
s2P . Note that sincex is Kemeny, enforcing thaty > x is going to
discount all permutations wheremax > x > y. Thus the second
term cannot be as big ass2P . Thus both the vertices returned by
the Next Votes problem are Kemeny winners. Thus, the Kemeny
winner determination problem onG can be reduced to the Next
Votes (with one vote) problem onG′.



Figure 6: How should we select additional votes to request?

#P-Hardness of Probability Computations: We next show that
computing Equation 15 is#P-Hard.

THEOREM5 (#P-HARDNESS OFNEXT VOTES). Computing
P

a∈A(Q) maxi P (π−1(1) = i, a ∧W ) is #P-Hard, even for aQ
with a single vote.

PROOF. (Sketch) Our proof uses a reduction from the#P-Hard
problem of counting linear extensions in a DAG. Consider a DAG
G = (V,A). We now add two additional vertices,x andy, such
that there is an arc from each of the vertices inG to x and toy
giving a new graphG′ = (V ′, A′).

Consider the computation of
P

a∈A(Q) maxi P (π−1(1) = i, a∧

W ) forQ = {{x, y}} forG′, which simplifies to:maxi
P

π:i wins

P (W ∧ (x > y)|π) + maxi
P

π:i wins P (W ∧ (y > x)|π).
The first of these two terms is maximized whenx is the maxi-

mum, and the second term is maximized wheny is the maximum.
Both terms are identical, sincex andy are identical, so we focus on
only one of the terms. LetF (p) =

P

π:x wins P (W ∧ x > y|π).
Using a calculation similar to that used to derive Equation 7, we
have:F (p) = p|A

′| ×
P|A′|
i=0 ai(

1−p
p

)|A
′|−i. We are interested in

a|A′|, the number of permutations that correspond to linear exten-
sions. Once again, by repeating the trick in Theorem 3, we may
use multiple values forp to generate different graphsG′, and use
the probability computation to derive many equationsF (p) corre-
sponding to differentp, and then derive the value ofa|A′| using
Lagrange’s interpolation.

Therefore, counting the number of linear extensions inG can
be reduced to a polynomial number of instances of computing the
probability expression corresponding to the Next Votes problem.

3.3 Selection and Evaluation of Additional Votes
We next present a general framework to select and evaluate ad-

ditional votes for the Next Votes Problem. Our approach is the
following:

1. score all objects with a scoring functions using initial vote
matrixW

2. select a batch ofb votes to request
3. evaluate the new matrixW

′

(initial votes inW and addi-
tional b votes) with a scoring functionf to predict the maxi-
mum object inO.

This framework is displayed in more detail in Algorithm 6. In
Step 1, we use a scoring functions(·) to score each object, and in
Step 3, we use a scoring functionf(·) to evaluate the new matrix
W

′

to predict the maximum object inO. We briefly discuss the
choice of these scoring functions when presenting experimental re-
sults later in Section 3.4. For now, we assume the use of a scoring
function in Step 1 which scores objects proportional to the proba-
bility that they are the maximum object inO. It is important to note
that our general framework assumes no knowledge of worker accu-
racy p, unlike in ML vote selection. We next focus our attention
upon how to selectb additional votes (Step 2).

Heuristic Vote Selection Strategies:How should we select pairs
of objects for human workers to compare, when given a vote budget

Algorithm 6 General Vote Selection Framework
Require: n objects, vote matrixW , budgetb
Ensure: ans= predicted maximum object

compute scores[·] for all objects using functions {Step 1}
initialize multisetQ {of votes to request}
sort all objects bys[·], store object indices inindex[·]
selectb votes forQ using a vote selection strategy {Step 2}
submit batchQ
updateW with new votes from workers
compute final scoref [·] for all objects using functionf {Step 3}
ans← argmaxi f [i]

of b votes? Since ML vote selection is computationally infeasible,
we consider four efficient polynomial-time vote selection strate-
gies: Paired, Max, Greedy, and Complete Tournament strategies.
For ease of explanation, we use the graph in Figure 6 as an ex-
ample. Before executing a vote selection strategy, we assume that
each object has been scored by a scoring function in Step 1 of the
framework, denoted bys[·] in Algorithm 6. As a running example
to explain our strategies, we assume that our PageRank heuristic
(Section 2.4) is used as the scoring function in Step 1: object A
has score 0.5, objectsB andE each have score 0.25, and objects
C,D, andF have score 0. Without loss of generality, assume that
the final rank order of the objects, before next vote selection, is
(A,B,E,C,D, F ).

Strategy 7Paired Vote Selection

Require: n objects, budgetb, vote multisetQ, scoress[·], sorted
object indicesindex[·]

Ensure: Q = selectedb votes
for i : 1 . . . b do
Q ← Q ∪ (index[2i − 1], index[2i]) { index[1] has largest
scores}

end for

The first strategy we consider is Paired vote selection (PAIR),
displayed in Strategy 7. In this strategy, pairs of objects are se-
lected greedily, such that no object is included in more thanone of
the selected pairs. For example, with a budget ofb = 2, the strat-
egy asks human workers to compare the rank 1 and rank 2 objects,
and the rank 3 and rank 4 objects, where rank is determined by the
scoring function from Step 1 in Algorithm 6. The idea behind this
strategy is to restrict each object to be involved in at most one of
the additional votes, thus distributing theb votes among the largest
possible set of objects. This can be anticipated to perform well
when there are many objects with similar scores, e.g., when there
are many objects in the initial vote graphGv which have equally
high chances of being the maximum object. Considering the exam-
ple in Figure 6, forb = 2, this strategy requests the votes(A,B)
and(E,C).

Strategy 8Max Vote Selection

Require: n objects, budgetb, vote multisetQ, scoress[·], sorted
object indicesindex[·]

Ensure: Q = selectedb votes
for i : 2 . . . (b+ 1) do
Q ← Q ∪ (index[1], index[i]) { index[1] has largest score
s}

end for

The second strategy we consider is Max vote selection (MAX),
displayed in Strategy 8. In this strategy, human workers areasked



to compare the top-ranked object against other objects greedily. For
example, with a budget ofb = 2, this strategy asks human workers
to compare the rank 1 and rank 2 objects, and the rank 1 and rank
3 objects, where rank is determined by the scoring function in Step
1 in Algorithm 6. Considering again the example in Figure 6, for
b = 2, this strategy requests the votes(A,B) and(A,E).

Strategy 9Greedy Vote Selection

Require: n objects, budgetb, vote multisetQ, scoress[·], sorted
object indicesindex[·]

Ensure: Q = selectedb votes
initialize priority queueS {storing unordered object pairs}
for i : 1 . . . b do

for j : (i+ 1) . . . b do
insert object pair(i, j) into S with priority (s[i]× s[j])

end for
end for
for i : 1 . . . b do

Remove highest priority object pair(x, y) from S

Q← Q ∪ (x, y)
end for

The third strategy we consider is Greedy vote selection (GREEDY),
displayed in Strategy 9. In this strategy, all possible comparisons
(unordered object pairs) are weighted by the product of the scores
of the two objects, where the scores are determined in Step 1 of
Algorithm 6. In other words, a distribution is constructed across
all possible object pairs, with higher weights assigned to object
pairs involving high scoring objects (which are more likelyto be the
maximum object inO). After weighting all possible object pairs,
this strategy submits theb highest weight pairs for human compar-
ison. Considering the example in Figure 6, object pairs(A,B) and
(A,E) has weight 0.125,(B,E) has weight 0.0625, and all other
pairs have weight 0. For a budgetb = 2, this strategy requests the
votes(A,B) and(A,E).

Strategy 10Complete (Round-Robin) Vote Selection

Require: n objects, budgetb, vote multisetQ, scoress[·], sorted
object indicesindex[·]

Ensure: Q = selectedb votes
K ← 0 {K is the size of the round-robin tournament}
while K∗(K+1)

2
≤ b do

K ← K + 1
end while
K ← K − 1
for i : 1 . . .K do

for j : (i+ 1) . . .K do
Q← Q∪ (index[i], index[j]) { index[1] has largest score
s}

end for
end for
initialize priority queueS {storing unordered object pairs}
for i : 1 . . .K do

insert object pair(i,K+1) intoS with priority (s[i]×s[K+
1])

end for
for i : 1 . . . (b− K∗(K+1)

2
) do

Remove highest priority object pair(x, y) from S

Q← Q ∪ (x, y) {select remaining votes greedily}
end for

The fourth strategy we consider is Complete Tournament vote
selection (COMPLETE), displayed in Strategy 10. In this strategy,
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Figure 7: Precision at 1 versus number of initial votes. 1 additional vote, 7
objects, p=0.75.

we construct a single round-robin tournament among theK objects
with the highest scores from Step 1 of Algorithm 6, whereK is
the largest number such thatK∗(K+1)

2
≤ b. In a single round-

robin tournament, each of theK objects is compared against every
other exactly once. For the remainingr = b− K∗(K+1)

2
votes, we

consider all object pairs containing the(K + 1)st (largest scoring)
object and one of the firstK objects, and weight each of theseK
object pairs by the product of the scores of the two objects (as we
did with Greedy vote selection). We then select ther object pairs
with highest weight.

The idea behind the Complete Tournament strategy is that a round-
robin tournament will likely determine the largest object among the
set ofK objects. If the set ofK objects contains the true max, this
strategy can be anticipated to perform well. Regarding the selection
of the remaining votes, the strategy can be thought of as augment-
ing theK object tournament to become an incompleteK+1 object
tournament, where the remaining votes are selected greedily to best
determine if the(K+1)st object can possibly be the maximum ob-
ject inO. Considering the example in Figure 6, forb = 2, there is a
2-object tournament among objectsA andB and vote(A,B) is re-
quested. Then, for the remaining vote, the strategy greedily scores
object pairs which contain both the next highest ranked object not
in the tournament, objectE, and one of the initial 2 objects. Object
pair(A,E) will be scored 0.125 and(B,E) will be scored 0.0625,
so the second vote requested is(A,E).

3.4 Experiments
Which of our four vote selection heuristics (PAIR, MAX, GREEDY,

or COMPLETE) is the best strategy? We now describe a set of ex-
periments measuring the prediction performance of our heuristics
for various sets of parameters. When evaluating our vote selec-
tion strategies, we utilized a uniform vote sampling procedure, de-
scribed previously in Section 2.5, to generate an initial vote matrix
W . Then, in Step 1 of our vote selection framework (Algorithm 6),
we adopted our PageRank heuristic (Section 2.4) as our scoring
function s(·) to score each object inO. In Step 2, we executed
each of our vote selection strategies using these scores. InStep
3, we used our PageRank heuristic as our scoring functionf(·) to
score each object in the new matrixW

′

(composed of both the ini-
tial votes in vote matrixW and theb requested additional votes),
and generate final predictions for the maximum object inO. Note
that we performed several experiments contrasting prediction per-
formance of PageRank versus other possible scoring functions and
found PageRank to be superior to the other functions. Hence,we
selected PageRank as the scoring function for both Step 1 andStep
3 of our vote selection framework.
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• ML vote selection outperforms heuristic strategies when
results are evaluated with ML scoring.
• However, when ML vote selection is evaluated with

PageRank (e.g., like the heuristics), prediction perfor-
mances of all methods are similar.

For a first experiment, we compare the prediction performance
(Precision at 1) of our four vote selection heuristics (and random
initial vote selection (RAND)) against the “optimal” strategy, i.e.,
the Maximum Likelihood (ML) vote selection procedure described
in Section 3.1. Recall that ML can be used in two places: when
selecting additional votes (as in Section 3.1), and when predicting
the max given the initial plus additional votes (e.g., ML evaluation
in Section 2.2). We use ML-ML to refer to using ML for both tasks,
this gives the best possible strategy. To gain additional insights, we
also consider ML-PR, a strategy where ML is used to select thead-
ditional votes, and PageRank is used to select the winner. Since ML
is computationally very expensive, for this experiment we consider
a small problem: selectoneadditional vote given a set of 50 (2.5x
Edge Coverage) to 200 initial votes (10x Edge Coverage) among a
set of 7 objects,p = 0.75.

Our experimental results are displayed in Figure 7. First, as ex-
pected, ML-ML has the best performance. Clearly, ML-ML is do-
ing a better job at selecting the additional vote and in selecting the
winner. Of course, keep in mind that ML-ML is not feasible in most
scenarios, and it also requires knowledge of the worker accuracyp.
Nevertheless, the gap between ML-ML and the other strategies in-
dicates there is potential room for future improvement beyond the
heuristics we have developed.

Second, we observe in Figure 7 that all other strategies, includ-
ing ML-PR, perform similarly. The relative performance of ML-PR
indicates that the gain achieved by ML-ML is due to its betterpre-
diction of the winner, as opposed to its choice for the next vote.
In hindsight, this result is not surprising, since the selection of a
single vote cannot be expected to have a large impact. (We will
observe larger impacts when we select multiple additional votes.)
The results also demonstrate that our vote selection heuristics show
promise, since they seem to be doing equally well as ML, and since
they often perform slightly better than RAND, at least for the se-
lection of a single next vote.

To evaluate our heuristics in larger scenarios, we conducted a
series of experiments, and the results of some of those are summa-
rized in Figures 8, 9 and 10. To begin, we summarize some of the

-0.2
 0

 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 20  40  60  80  100 120 140 160 180 200

G
ai

n 
(P

 a
t 1

)

Initial Num Votes

RAND
PAIR
MAX

GREEDY
COMPLETE

-0.2
 0

 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

 20  40  60  80  100 120 140 160 180 200

G
ai

n 
(P

 a
t 1

)

Initial Num Votes

RAND
PAIR
MAX

GREEDY
COMPLETE

 0

 0.5

 1

 1.5

 2

 2.5

 20  40  60  80  100 120 140 160 180 200

G
ai

n 
(P

 a
t 1

)

Initial Num Votes

RAND
PAIR
MAX

GREEDY
COMPLETE

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 20  40  60  80  100 120 140 160 180 200

G
ai

n 
(P

 a
t 1

)

Initial Num Votes

RAND
PAIR
MAX

GREEDY
COMPLETE
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general trends that can be observed in these figures.

General observations regarding all strategies:
• As the number of additional votes increases, prediction

performance increases.
• As the number of additional votes increases, the gain

from additional votes decreases (though the decrease is
not very dramatic).
• As worker accuracy increases, prediction performance

increases.
• As worker accuracy increases, the gain from additional

votes increases.

We only explain the graph in Figure 8(right), since the others
are self-explanatory. In this graph, the vertical axis shows the in-
cremental P@1 gain atk additional votes, defined as (P@1 withk
additional votes - P@1 withk − 1 additional votes) / (P@1 with
0 additional votes). As we can see, the information providedby
additional votes is more valuable when there are fewer initial votes
(second bullet above).

The Complete Tournament and Greedy strategies are signif-
icantly better than the Max and Paired strategies.

We can also use Figures 8, 9 and 10 to compare our heuristics.
First, notice that the difference between heuristics can bevery sig-
nificant. For instance, in Figure 10(bottom left) we see thatthe
Paired (PAIR) strategy provides a 0.7x P@1 gain for 5 additional
votes (100 initial votes,p = 0.95), while the Complete Tournament
(COMPLETE) strategy provides a 1.5x P@1 gain, where we mea-
sure P@1 gain as (P@1 withk votes - P@1 with 0 votes) / (P@1
with 0 votes). Second, we observe that the Complete Tournament
and Greedy (GREEDY) vote selection strategies consistently out-
perform the Max (MAX) and Paired strategies in all scenarios. In
particular, the performance gap between the Complete Tournament
or Greedy strategies and the Max or Paired strategies is greater
when selecting 15 additional votes, as compared to when selecting
5 additional votes. This indicates that when a larger vote budget
b is available for additional votes, the additional votes will be bet-
ter utilized by the more sophisticated strategies (Complete Tour-
nament and Greedy) as compared to the simpler strategies (Max
and Paired). Also, note in Figure 8(left) that the prediction perfor-
mances of the Complete Tournament and Greedy strategies steadily
improve with additional votes, while the Max and Paired strategies
taper off.
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Figure 11: Objects are divided intok initial object types. Gain (P@1)
relative to a 0 additional votes baseline vs number of initial votes. 100
objects, p=0.95, 15 additional votes. 1 type (top left), 5 types (top right), 10
types (bottom left), 20 types (bottom right).

Given only votes between objects of the same type:
• The value of additional votes is greater when it is more

difficult to predict the maximum object.
• The Complete Tournament strategy is the best strategy.

In our scenarios so far, the Complete Tournament and Greedy
strategies perform similarly. To differentiate between the two, we
explored different ways in which the initial votes could be gen-
erated. (Recall that up to this point we have been randomly se-
lecting the pairs of objects that are compared by the initialvotes.)
We next discuss one of these possible different vote generation
schemes. Suppose that our objects are of different types (e.g., soft-
cover books, hardcover books, e-books, etc.), and for some reason
initial votes between objects of the same type are much more likely
than across types. For example, it is more likely that two e-books
have been compared, rather than one e-book and one hard-cover
book. (The situation is analogous to sporting events, whereintra-
league games are more likely than inter-league games.)

For our experiment, we consider an extreme instance where there
areno initial votes involving objects of different types. In partic-
ular, we divide our setO of n objects intok disjoint object types.
When votes are sampled for the initial vote matrixW , sampling
of votes is only permitted between objects of the same type. Keep
in mind that predicting the maximum object inO is more diffi-
cult when there are more object types because each object type
will likely have a leader (greatest object), each of these leaders will
have on average similar probabilities of being the maximum object
(since object type groups are likely of similar size), and the ini-
tial vote matrixW provides no information regarding comparisons
between these leaders.

We perform experiments for different values ofk (e.g., differ-
ent numbers of initial object types), Figure 11 displays Precision
at 1 gain relative to a 0 additional votes baseline. We observe that
the P@1 gain increases for the Complete Tournament and Greedy
strategies ask increases, implying that the value of additional votes
is greater when it is more difficult to predict the maximum object
from the initial vote matrix. That is, in the harder problem instances
(largerk), the additional votes play a more critical role in compar-
ing the object type leaders. More importantly, the CompleteTour-
nament strategy outperforms the Greedy strategy (and the others
too) in this more challenging scenario.

Finally, we conduct a more in-depth study of the Complete Tour-
nament vote selection strategy and examine the benefit of vote re-
dundancy. Given a limited budget, should the Complete Tourna-
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Figure 12: Variations of the Complete Tournament strategy, 10 additional
votes. 5 OBJ = compare 5 objects 4 times each. 10 OBJ = compare 10 ob-
jects 2 times each. 20 OBJ = compare 20 objects 1 time each. 100objects,
p=0.95.

ment strategy select fewer top objects and propose more redundant
votes, or should it select more objects and ask fewer votes per pair?
For instance, the Complete Tournmament strategy could select the
top three objects and submit four votes for each pair, for a total of
12 additional votes. Or it could select the top 4 objects, andfor
each of the possible 6 comparisons, request 2 votes (for the same
12 total additional votes). What is the best approach?

Figure 12 displays the Precision at 1 of the Complete Tourna-
ment strategy for 10 additional votes, where the votes are uniformly
and randomly distributed among the 5, 10, or 20 objects inO with
highest score (as provided in Step 1 of Algorithm 6). We find that
distributing the 10 votes among 5 objects, where each objectis
compared against every other, leads to the best prediction perfor-
mance. That is, we do not observe any benefit for distributingvotes
among a larger set of objects when using the Complete Tourna-
ment strategy. The strategy performs well only when additional
votes provide the ability to rank the objects in a set. Assuming that
votes are distributed randomly among object pairs, the Complete
Tournament strategy is able to order the set only when most objects
in the set are compared against each other. Note that Figure 12 is
only an illustration of the interaction between the number of top
objects selected and the redundancy of votes. The results will vary
depending upon worker accuracy and the vote budgetb.

4. RELATED WORK
As far as we know, we are the first to address the Next Votes

Problem, and there is no relevant literature that directly addresses
this problem. Thus, in this section, we review work related to the
Judgment Problem. The algorithms and heuristics we presented for
the Judgment Problem are primarily drawn from three diversetopic
areas: paired comparisons, social choice, and ranking.

The Judgment Problem has its roots in thepaired comparisons
problem, first studied by statisticians decades ago [20, 12]. In the
paired comparisons problem, given a set of pairwise observations
regarding a set of objects, it is desired to obtain a ranking of the
objects. In contrast, in the Judgment Problem, we are interested in
predicting the maximum object.

The Judgment Problem also draws upon classical work in the
economic and social choice literature regardingWinner Determi-
nation in elections [25, 31]. Numerous voting rules have been used
(Borda, Condorcet, Dodgson, etc.) to determine winners in elec-
tions [28]. The voting rules most closely related to our workare
the Kemeny rule [19] and Slater rule [29]. AKemeny permutation
minimizes the total number of pairwise inconsistencies among all
votes, whereas aSlater permutationminimizes the total number of
pairwise inconsistencies in the majority-vote graph [6]. An object
is considered aKemeny winneror Slater winnerif it is the greatest
object in a Kemeny permutation or Slater permutation.

We believe our ML formulation is more principled than these
voting rules, since ML aggregates information across all possible
permutations. For example, in the graph of Figure 1, whileC and



D are both admissible solutions for the Kemeny rule, ML returns
D as an answer, sinceD has almost one and a half more times
the probability of being the maximum object compared toC. No
prior work about the Judgment Problem, to our knowledge, uses
the same approach as our ML formulation.

In the recent social choice literature, the research most closely
related to ours has been work by Conitzer et al. regarding Kemeny
permutations and Maximum Likelihood [9, 10]. Conitzer has stud-
ied various voting rules and determined for which of them there ex-
ist voter error models where the rules are ML estimators [8].In our
study, we focused upon the opposite question: for a specific voter
error model, we presented both Maximum Likelihood, as well as
heuristic solutions, to predict the winner.

Our work is also related to research in the theory community
regarding ranking in the presence of errors [21, 1] and noisycom-
putation [14, 2]. Both Kenyon et al. and Ailon et al. present ran-
domized polynomial-time algorithms for feedback arc set intour-
nament graphs. Their algorithms are intended to approximate the
optimal permutation, whereas we seek to predict the optimalwin-
ner. Feige et al. and Ajtai et al. present algorithms to solvea va-
riety of problems, including the Max Problem, but their scenarios
involve different comparison models or error models than ours.

More generally, in the last several years, there has been a sig-
nificant amount of work regarding crowdsourcing systems, both
inside [15, 16] and outside [22, 23] the database community.Of
note is recent work by Tamuz et al. [30] on a crowdsourcing sys-
tem that learns a similarity matrix across objects, while adaptively
requesting votes. Not as much work has been done regarding gen-
eral crowdsourcing algorithms [24, 27]. Instead, most algorithmic
work in crowdsourcing has focused upon quality control [3, 18].

5. CONCLUSION
In a conventional database system, finding the maximum ele-

ment in a set is a relatively simple procedure. It is thus some-
what surprising that in a crowdsourcing database system, finding
the maximum is quite challenging, and there are many issues to
consider. The main reason for the complexity, as we have seen, is
that our underlying comparison operation may give an incorrect an-
swer, or it may even not complete. Thus, we need to decide which
is the “most likely” max (Judgment Problem), and which additional
votes to request to improve our answer (Next Votes Problem).

Our results show that solving either one of these problems op-
timally is very hard, but fortunately we have proposed effective
heuristics that do well. There is a gap between the optimal solution
and what our heuristics find (as seen for example in Figure 7),but
we believe that it will be very hard to close this gap without incur-
ring high computational costs. Among the heuristics, we observed
significant differences in their predictive ability, indicating that it
is very important to carefully select a good heuristic. Our results
indicate that in many cases (but not all) our proposed PageRank
heuristic is the best for the Judgment Problem, while the Complete
Tournament heuristic is the best for the Next Votes Problem.

Our results are based on a relatively simple model where object
comparisons are pairwise, and worker errors are independent. Of
course, in a real crowdsourced database system these assumptions
may not hold. Yet we believe it is important to know that even with
the simple model, the optimal strategies for the Judgment Problem
and Next Votes Problem areNP-Hard. Furthermore, our heuristics
can be used even in more complex scenarios, since they do not de-
pend on the evaluation model. Even though they can be used when
the model assumptions do not hold, we believe it is importantto un-
derstand how the heuristics perform in the more tractable scenario
we have considered here.
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