
MLbase: A Distributed Machine-learning System

Tim Kraska† Ameet Talwalkar† John Duchi
Brown University AMPLab, UC Berkeley AMPLab, UC Berkeley

kraskat@cs.brown.edu ameet@cs.berkeley.edu jduchi@eecs.berkeley.edu

Rean Griffith Michael J. Franklin Michael Jordan
VMware AMPLab, UC Berkeley AMPLab, UC Berkeley

rean@vmware.com franklin@cs.berkeley.edu jordan@cs.berkeley.edu
† These authors contributed equally.

ABSTRACT
Machine learning (ML) and statistical techniques are key to
transforming big data into actionable knowledge. In spite
of the modern primacy of data, the complexity of existing
ML algorithms is often overwhelming—many users do not
understand the trade-offs and challenges of parameterizing
and choosing between different learning techniques. Fur-
thermore, existing scalable systems that support machine
learning are typically not accessible to ML researchers with-
out a strong background in distributed systems and low-level
primitives. In this work, we present our vision for MLbase,
a novel system harnessing the power of machine learning for
both end-users and ML researchers. MLbase provides (1) a
simple declarative way to specify ML tasks, (2) a novel opti-
mizer to select and dynamically adapt the choice of learning
algorithm, (3) a set of high-level operators to enable ML re-
searchers to scalably implement a wide range of ML methods
without deep systems knowledge, and (4) a new run-time
optimized for the data-access patterns of these high-level
operators.

1. INTRODUCTION
Mobile sensors, social media services, genomic sequencing,

and astronomy are among a multitude of applications that
have generated an explosion of abundant data. Data is no
longer confined to just a handful of academic researchers or
large internet companies. Extracting value from such Big
Data is a growing concern, and machine learning techniques
enable users to extract underlying structure and make pre-
dictions from large datasets. In spite of this, even within
statistical machine learning, an understanding of computa-
tional techniques for algorithm selection and application is

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2013.
6th Biennial Conference on Innovative Data Systems Research (CIDR’13)
January 6-9, 2013, Asilomar, California, USA.

only beginning to appear [7]. The complexity of existing al-
gorithms is (understandably) overwhelming to layman users,
who may not understand the trade-offs, parameterization,
and scaling necessary to get good performance from a learn-
ing algorithm. Perhaps more importantly, existing systems
provide little or no help for applying machine learning on
Big Data. Many systems, such as standard databases and
Hadoop, are not designed for the access patterns of machine
learning, which forces developers to build ad-hoc solutions
to extract and analyze data with third party tools.

With MLbase we aim to make machine learning accessi-
ble to a broad audience of users and applicable to various
data corpora, ranging from small to very large data sets.
To achieve this goal, we provide here a design for MLbase
along the lines of a database system, with four major foci.
First, MLbase encompasses a new Pig Latin-like [22] declar-
ative language to specify machine learning tasks. Although
MLbase cannot optimally support every machine learning
scenario, it provides reasonable performance for a broad
range of use cases. This is similar to a traditional DBMS:
highly optimized C++ solutions are stronger, but the DBMS
achieves good performance with significantly lower develop-
ment time and expert knowledge [28]. Second, MLbase uses
a novel optimizer to select machine learning algorithms—
rather than relational operators as in a standard DBMS—
where we leverage best practices in ML and build a sophis-
ticated cost-based model. Third, we aim to provide answers
early and improve them in the background, continuously re-
fining the model and re-optimizing the plan. Fourth, we
design a distributed run-time optimized for the data-access
patterns of machine learning.

In the remainder, we outline our main contributions:

• We describe a set of typical MLbase use cases, and we
sketch how to express them in our high-level language

• We show the optimization pipeline and describe the opti-
mizer’s model selection, parameter selection, and valida-
tion strategies

• We sketch how the optimizer iteratively improves the model
in the background

• We describe the MLbase run-time and show how it differs
from traditional database pipelines.

2. USE CASES
MLbase will ultimately provide functionality to end users

for a wide variety of common machine learning tasks: classi-
fication, regression, collaborative filtering, and more general
exploratory data analysis techniques such as dimensionality
reduction, feature selection, and data visualization. More-
over, MLbase provides a natural platform for ML researchers
to develop novel methods to these tasks. We now illustrate
a few of the many use cases that MLbase will provide and
along the way, we describe MLbase’s declarative language
for tackling these problems.

2.1 ALS Prediction
Amyotrophic Lateral Sclerosis (ALS), commonly known

as Lou Gehrig’s disease, is a progressive fatal neurodegener-
ative illness. Although most patients suffer from a rapidly
progressing disease course, some patients (Stephen Hawking,
for example) display delayed disease progression. Leverag-
ing the largest database of clinical data for ALS patients
ever created, the ALS Prediction Prize [5] challenges partic-
ipants to develop a binary classifier to predict whether an
ALS patient will display delayed disease progression.

MLbase on its own will not allow one to win the ALS prize,
but it can help a user get a first impression of standard classi-
fiers’ performance. Consider the following example “query,”
which trains a classifier on the ALS dataset:

var X = load("als_clinical", 2 to 10)

var y = load("als_clinical", 1)

var (fn-model, summary) = doClassify(X, y)

The user defines two variables: X for the data (the inde-
pendent features/variables stored in columns 2 to 10 in the
dataset) and y for the labels (stored in the first column) to
be predicted via X. The MLbase doClassify() function de-
clares that the user wants a classification model. The result
of the expression is a trained model, fn-model, as well as a
model summary, describing key characteristics of the model
itself, such as its quality assessment and the model’s lineage
(see Section 3).

The language hides two key issues from the user: (i) which
algorithms and parameters the system should use and (ii)
how the system should test the model or distribute com-
putation across machines. Indeed, it is the responsibility
of MLbase to find, train and test the model, returning a
trained classifier function as well as a summary about its
performance to the user.MLbase

2.2 Music Recommendation
The Million Song Dataset Challenge [6] is to predict the

listening behavior of a set of 110,000 music listeners (i.e., the
test-set), deciding which songs of the Million Song Dataset [10]
they will listen to based on partial listening history and the
listening history of 1M other users (i.e., the training-set).
This is an exemplar of collaborative filtering (or noisy matrix
completion) problem. Specifically, we receive an incomplete
observation of a ratings matrix, with columns correspond-
ing to users and rows corresponding to songs, and we aim to
infer the unobserved entries of this ratings matrix. Under
this interpretation, we can tackle this collaborative filtering
task with MLbase’s doCollabFilter expression as follows:

var X = load("user_song_pairs", 1 to 2)

var y = load("user_ratings", 1)

var (fn-model, summary) = doCollabFilter(X, y)

The semantics of doCollabFilter are identical to doClassify,
with the obvious distinction of returning a model fn-model
to predict song ratings.

2.3 Twitter Analysis
Equipped with snapshots of the Twitter network and as-

sociated tweets [19, 26], one may wish to perform a variety
of unsupervised exploratory analyses to better understand
the data. For instance, advertisers may want to find features
that best describe “hubs,” people with the most followers or
the most retweeted tweets. MLbase provides facilities for
graph-structured data, and finding relevant features can be
expressed as follows:

var G = loadGraph("twitter_network")

var hubs-nodes = findTopKDegreeNodes(G, k = 1000)

var T = textFeaturize(load("twitter_tweet_data"))

var T-hub = join(hub-nodes, "u-id", T, "u-id")

findTopFeatures(T-hub)

In this example, the user first loads the twitter graph and
applies the findTopKDegreeNodes() function to determine
the hubs. Afterwards, the tweets are loaded and featurized
with textFeaturize(). During this process, every word in a
tweet, after stemming, becomes a feature. The result of the
featurization as well as the pre-determined hubs are joined
together on the user-id, u-id, and finally, findTopFeatures
finds the distinguishing features of the hubs.

2.4 ML Research Platform
A key aspect of MLbase is its extensibility to novel ML

algorithms. We envision ML experts using MLbase as a
platform to experiment with new ML algorithms. MLbase
has the advantage that it offers a set of high-level primitives
to simplify building distributed machine learning algorithms
without knowing the details about data partitioning, mes-
sage passing, or load balancing. These primitives currently
include efficient implementations of gradient and stochas-
tic gradient descent, mini-batch extensions of map-reduce
that naturally support divide-and-conquer approaches such
as [21], and graph-parallel primitives as in GraphLab [20].
We have already mapped several algorithms, including k-
means clustering, LogitBoost [16], various matrix factoriza-
tion tasks (as described in [21]), and support vector ma-
chines (SVM) [13] to these primitives.

Furthermore, we allow the ML expert to inspect the execu-
tion plan using a database-like explain function and steer
the optimizer using hints, making it an ideal platform to
easily setup experiments. For example, the hints allow an
expert to fix the algorithms, the parameter ranges and/or
force a full grid-search in order to generate parameter sensi-
tivity analysis. Even though in this setting, the ML expert
does not use the automatic ML algorithm nor the parameter
selection, he would still benefit from the run-time optimiza-
tion.

3. ARCHITECTURE
Figure 1 shows the general architecture of MLbase, which

consists of a master and several worker nodes. A user is-
sues requests using the MLbase declarative task language to
the MLbase master. The system parses the request into a
logical learning plan (LLP), which describes the most gen-
eral workflow to perform the ML task. The search space for

ML Developer

Meta-Data

Statistics

User

Declarative
ML Task

ML Contract +
Code

Master Server

….

result
(e.g., fn-model & summary)

Optimizer

Parser

Executor/Monitoring

ML Library

DMX
Runtime

DMX
Runtime

DMX
Runtime

DMX
Runtime

LLP

PLP

M
aster

Slaves

Figure 1: MLbase Architecture
MLbase

the LLP consists of the combinations of ML algorithms, fea-
turization techniques, algorithm parameters, and data sub-
sampling strategies (among others), and is too huge to be
explored entirely. Therefore, an optimizer tries to prune the
search-space of the LLP to find a strategy that is testable in
a reasonable time-frame. Although the optimization process
is significantly harder than in relational database systems,
we can leverage many existing techniques. For example,
the optimizer can consider the current data layout, mate-
rialized intermediate results (pre-processed data) as well as
general statistics about the data to estimate the model learn-
ing time. However, in contrast to a DBMS, the optimizer
also needs to estimate the expected quality for each of the
model configurations to focus on the most promising candi-
dates.

After constructing the optimized logical plan, MLbase
transforms it into a physical learning plan (PLP) to be exe-
cuted. A PLP consists of a set of executable ML operations,
such as filtering and scaling feature values, as well as syn-
chronous and asynchronous MapReduce-like operations. In
contrast to an LLP, a PLP specifies exactly the parameters
to be tested as well as the data (sub)sets to be used. The
MLbase master distributes these operations onto the worker
nodes, which execute them through the MLbase runtime.

The result of the execution—as in the examples of the
previous section—is typically a learned model (fn-model)
or some other representation (relevant features) that the
user may use to make predictions or summarize data. ML-
base also returns a summary of the quality assessment of the
model and the learning process (the model’s lineage) to allow
the user to make more informed decisions. In the prototype
we have built, we return the learned model as a higher-order
function that can be immediately used as a predictive model
on new data.1

1We use the Scala language, which makes it easy to return
and serialize functions.

In contrast to traditional database systems, the task here
is not necessarily complete upon return of the first result.
Instead, we envision that MLbase will further improve the
model in the background via additional exploration. The
first search therefore stores intermediate steps, including
models trained on subsets of data or processed feature val-
ues, and maintains statistics on the underlying data and
learning algorithms’ performance. MLbase may then later
re-issue a better optimized plan to the execution module to
improve the results the user receives.

This continuous refinement of the model in the background
has several advantages. First, the system becomes more
interactive, by letting the user experiment with an initial
model early on. Second, it makes it very easy to create
progress bars, which allow the user to decide on the fly when
the quality is sufficient to use the model. Third, it reduces
the risk of stopping too early. For example, the user might
find, that in the first 10 minutes, the system was not able to
create a model with sufficient quality and he is now consid-
ering other options. However, instead of letting the system
remain idle until the user issues the next request, MLbase
continues searching and testing models in the background.
If it finds a model with better quality, it informs the user
about it. Finally, it is very natural for production systems
to continuously improve models with new data. MLbase
is designed from the beginning with this use case in mind
by making new data one of the dimensions for improving a
model in the background.

Another key aspect of MLbase is its extensibility to novel
ML algorithms. We envision ML experts constantly adding
new ML techniques to the system, with the requirement that
developers implement new algorithms in MLbase primitives
and describe their properties using a special contract (see the
left part of Figure 1). The contract specifies the type of al-
gorithm (e.g., binary classification), the algorithm’s parame-
ters, run-time complexity (e.g., O(n)) and possible run-time
optimizations (e.g., synchronous vs. asynchronous learning;
see Section 5). The easy extensibility of MLbase will simul-
taneously make it an attractive platform for ML experts and
allow users to benefit from recent developments in statistical
machine learning.

4. QUERY OPTIMIZATION
Having described our architecture, we now turn to a deeper

description of our query optimization techniques and ideas.
Similar to approaches in traditional database systems, we
transform the declarative ML task into a logical plan, op-
timize it, and finally translate it into a physical plan; we
describe each of these three below.

4.1 Logical Learning Plan
The first step of optimizing the declarative ML task into

our machine-executable language is the translation into a
logical learning plan. During this translation many opera-
tions are mapped 1-to-1 to LLP operators (e.g., data load-
ing), whereas ML functions are expanded to their best-practice
workflows.

In what follows, we use binary support vector machine
(SVM) classification (see, e.g., [24]) as our running example
throughout. An SVM classifier is based on a kernel function
K, where K(x, x′) is a particular type of similarity measure
between data points x, x′. Given a dataset {x1, . . . , xn}, the

grid-search

configure model

var X = load("als_clinical",2 to 10)
var y = load("als_clinical", 1)
var (fn-model, summary) = doClassify(X, y)

standard feature
normalizer

create 10-folds

cross
validation

folds

(X'', y'')

SVM
kernel: RBF

λ=10⁶ σ = 1/d ⨉ 10⁶

(model-params,
cross-validation-summary)

top-1

train model

calculate
misclassification

rate

(fn-model, summary)

(X, y)

….

cross
validation

SVM
kernel: RBF

λ=10³ σ= 1/d ⨉ 10⁶

cross
validation

AdaBoost
rounds = 20

baseline-check:
nearest neighbor

baseline-check:
most common

label

(model-params,
cross-validation-summary)

fn-model

load (als_clinical)

down-sample 10%

train model

down-sample

(model-params,
cross-validation-summary)

model/data
interpretation

(X', y')

load (als_clinical)

SVM Adaboost

RBF linear stumps

regularization rounds

technique

kernel

params

...

...

...

(1) ML Query

(2) Generic Logical Plan

(3) Optimized Plan

(fn-model, summary)

down-sample

(X, y)

(X', y')

(X, y)

originalfeaturization ...normalizedbin

(X, y)
store

normalized folds

fn-model

top-1

cross-validate

fn-model

Figure 2: Optimization Process

goal is to learn a classifier for negative and positive examples

f(x) = sign

{ n∑
i=1

αiK(x, xi) + b

}
,

and finding f requires solving the numerical problem

min.
α,b

1

n

n∑
i=1

max

{
1−yi

(n∑
j=1

αjK(xi, xj)+b
)
, 0

}
+
λ

2
α>Kα,

where K = [K(xi, xj)]
n
i,j=1 is known as the Gram matrix

and λ ≥ 0 is a regularization parameter. Examples of ker-
nel functions include linear kernels K(x, x′) = x>x′ and the
RBF kernel K(x, x′) = exp(−‖x − x′‖2/2σ2). The parame-
ters MLbase selects may include the size n of the training
dataset, the type of kernel to use, kernel parameters (σ in
the case of RBF kernel), regularization values, and whether
to process the data vectors x so that their entries lie in par-
ticular ranges or are binned into similar groups.

In Figure 2, we provide a visualization of MLbase plan
expansion for the declarative ALS prediction task of Sec-
tion 2.1. According to best-practice the general plan as-
sumes, that the data is down-sampled to speed-up the train-
ing and validation process. As part of the search for a model,
MLbase evaluates several learning algorithms applicable to

this specific ML task (in classification, these may include
SVMs (above) or AdaBoost [15]). Evaluation includes find-
ing appropriate parameters (λ, σ, and featurization of x in
the SVM case). The LLP specifies the combinations of
parameters, algorithms, and data subsampling the system
must evaluate and cross-validate to test quality. After explo-
ration, the best model is selected, potentially trained using
a larger dataset, and sanity-checked using common baselines
(for classification, this may be predicting the most common
class label).

4.2 Optimization
The optimizer actually transforms the LLP into an op-

timized plan—with concrete parameters and data subsam-
pling strategies—that can be executed on our run-time. To
meet time constraints, the optimizer estimates execution
time and algorithm performance (i.e., quality) based on sta-
tistical models, also taking advantage of pruning heuristics
and newly developed online model selection tools [7]. As an
example, it is well-known that normalizing features to lie
in [−1, 1] yields performance improvements for SVM clas-
sifiers, so applying such normalization before attempting
more complicated techniques may be useful for meeting time
constraints. As another example, standard AdaBoost algo-

rithms, while excellent for choosing features, may be non-
robust to data outliers; a dataset known to contain outliers
may render training a classifier using AdaBoost moot.

Figure 2 shows an example optimized plan in step (3).
In this example, the optimizer uses standard feature nor-
malization and subsamples the data at a 10% rate. Fur-
thermore, the optimizer uses the best practice of 10-fold
cross-validation— equally splitting the data in 10 partitions
and setting one partition aside for evaluation in each of ten
experiments—while the final model is trained using the full
data set (X, y). The runtime evaluates the model using
the misclassification rate and against nearest-neighbor and
most-common label baselines.

Note, that many of the discussed optimization techniques
also apply to unsupervised learning even though it does not
allow for automatically evaluating the result with respect
to quality (e.g., done through the 10-fold cross validation
in Figure 2). For example, for clustering, very basic statis-
tics about the data can help to determine a good initial
number of seed clusters. Furthermore, the optimizer can
consider building multi-dimensional index structures and/or
pre-compute distance matrices to speed up the cluster algo-
rithm.

MLbase allows user-specified hints that can influence the
optimizer, which is similar to user influence in database
systems. Experts may also modify training algorithms, in
essence, the runtime itself, if they desire more control. These
hints, which may include recommended algorithms or fea-
turization strategies, makes MLbase a powerful tool even
for ML experts.

4.3 Optimizer examples
To demonstrate the advantages of an optimizer for se-

lecting among different ML algorithms, we implemented a
prototype using two algorithms: SVM and AdaBoost. For
both algorithms, we used publicly available implementa-
tions: LIBSVM [12] for SVM and the ML AdaBoost Tool-
box [1] for AdaBoost. We evaluated the optimizer for a clas-
sification task similar to the one in Figure 2 with 6 datasets
from the LIBSVM website: ‘a1a’, ‘australian’, ‘breast-cancer’,
‘diabetes’, ‘fourclass’, and ‘splice’. To better visualize the
impact of finding the best ML model, we performed a full
grid search over a fixed set of algorithm parameters, i.e.,
number of rounds (r) for AdaBoost and regularization (λ)
and RBF scale (σ) parameters for SVM. Specifically, we
tested r = {25, 50, 100, 200}, λ = {10−6, 10−3, 1, 103, 106},
and σ = 1

d
× {10−6, 10−3, 1, 103, 106}, where d is the num-

ber of features in the dataset. For each algorithm, set of
features and parameter settings, we performed 5-fold cross
validation, and report the average results across the held-out
fold.

Table 3 shows the best accuracy after tuning the param-
eters using grid search for the different datasets and algo-
rithms, with and without scaling the features (the best com-
bination is marked in bold). The results show first that there
is no clear winning combination for all datasets. Sometimes
AdaBoost outperforms SVM, sometimes scaling the features
helps, sometimes it does not.

Now we turn to understanding the search problem for pa-
rameters itself, depicted in Figures 4 and 5. Figure 4 shows,
for fixed regularization λ the impact of the σ parameter in
the RBF kernel on the accuracy, whereas Figure 5 visual-
izes the accuracy for varying the number of rounds r for

SVM AdaBoost
original scaled

a1a 82.93 82.93 82.87
australian 85.22 85.51 86.23
breast 70.13 97.22 96.48
diabetes 76.44 77.61 76.17
fourclass 100.00 99.77 91.19
splice 88.00 87.60 91.20

Figure 3: Classifier accuracy using SVM with an
RBF kernel and using AdaBoost

AdaBoost. As shown in Figure 4, the choice of σ in the
SVM problem clearly has a huge impact on quality; auto-
matically selecting σ is important. On the other hand, for
the same datasets, it appears that the number of rounds in
AdaBoost is not quite as significant once r ≥ 25 (shown
in Figure 5). Hence, an optimizer might decide to use Ad-
aBoost first without scaling and a fixed round parameter to
provide the user quickly with a first classifier. Afterwards,
the system might explore SVMs with scaled features to im-
prove the model, before extending the search space to the
remaining combinations.

The general accuracy of algorithms is just one of the as-
pects an optimizer may take into account. Statistics about
the dataset itself, different data layouts, algorithm speed
and parallel execution strategies (as described in the next
section) are just a few additional dimensions the optimizer
may exploit to improve the learning process.

0%	
10%	
20%	
30%	
40%	
50%	
60%	
70%	
80%	
90%	
100%	

a1a	 australian	 breast	 diabetes	 fourclass	 splice	

Ac
cu
ra
cy
	

10^-‐6	

10^-‐3	

1	

10^3	

10^6	

Figure 4: Impact of different σ = 1
d
×

{10−6, 10−3, 1, 103, 106} on the SVM accuracy with an
RBF kernel and λ = 10−6 on LIBSVM data-sets

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

a1a	 australian	 breast	 diabetes	 fourclass	 splice	

Ac
cu
ra
cy
	 25	

50	

100	

200	

Figure 5: Impact of r = {25, 50, 100, 200} on AdaBoost
on LIBSVM data-sets

5. RUNTIME
MLbase’s run-time supports a simple set of data-centric

primitives for machine learning tasks. The physical learn-
ing plan (PLP) composes these primitives together to build
potentially complex workflows. The master’s responsibility
is to distribute these primitives to the workers for their ex-
ecution, to monitor progress, and take appropriate actions
in the case of a node failure. Due to lack of space, we only
outline the basic techniques of our run-time.

At its core, the run-time supports the main relational op-
erators, predicate filters, projects, joins and simple trans-
formations by applying a higher-order function (similar to a
map in the map-reduce paradigm). However, machine learn-
ing algorithms often use special templates, that power-users
(ML experts) may implement for specific algorithms. Each
implemented algorithm also has a contract with the runtime
environment, which specifies computational guarantees and
whether (and which) consistency properties the runtime may
relax.

As a working example, consider gradient descent. Gradi-
ent descent algorithms broadly require two methods: a gra-
dient computation and an update function. The gradient
computation G simply takes a datum x and current param-
eters θ of a model, computing a gradient G(x, θ) of the ob-
jective. The update function U maps current parameters to
new parameters using a computed gradient, yielding the fol-
lowing pattern:

while Not(condition for completeness) do

θ = U
(
θ, 1
|X|
∑
x∈X G(x, θ)

)
end while

During execution, the gradient function G is invoked for
every datum x of the dataset X at the parameters θ. The
update function U modifies the current parameters θ based
on the average of all the computed gradients to form a new
set of parameters, and the process repeats until a MLbase-
defined termination condition holds.

Patterns such as these leave the optimizer significant free-
dom in its specification of run-time behavior and constructs.
As a simple example, the system may use different termi-
nation conditions or data distribution strategies. Focusing
more specifically on our gradient-based learning example, we
note that the optimizer may take advantage of properties of
statistical learning algorithms. Gradient-descent algorithms
are robust: they can tolerate noise in gradient estimates,
node failures, and even receiving stale (computed out of or-
der) gradient information while providing statistical guaran-
tees [8]. Thus, the runtime contract for a gradient descent
update function may specify that asynchrony and (heavy)
subsampling are acceptable. This statistical freedom and
robustness allows reduced consistency, so the system can
forego expensive failure recovery techniques and—in cases
such as these—avoid using techniques to deal with straggler
nodes.

Perhaps surprisingly, relaxing consistency can in some
cases improve the convergence rate and result in significantly
fewer iterations [23]. To demonstrate this, we show in Fig-
ure 6 the root-mean-square error (RMSE) for a collabora-
tive filtering algorithm, alternating-least-square (ALS), with
precise synchronous and approximate asynchronous gradient
aggregation, over the number of iterations (i.e., rounds) of
the algorithm for a synthetic data set. The figure shows that
prediction error decreases to the same point, but that the

0	
0.1	
0.2	
0.3	
0.4	
0.5	
0.6	
0.7	
0.8	
0.9	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	

Ro
ot
-‐	 M

ea
n-‐
Sq
ua

re
	 E
rr
or
	 (R

M
SE
)	

Rounds	

Synchronous	

Asynchronous	

Figure 6: Synchronous vs. asynchronous execution
of alternating least squares

asynchronous method offers substantial performance ben-
efits. On larger real datasets, the effects are more pro-
nounced. This example is one of a family of examples that
show that understanding the statistical properties of the
data and algorithms—such as that gradient descent is ro-
bust to sub-sampling and asynchrony—can yield substantial
improvements in run-time performance, which we leverage.

MLbase’s runtime makes it possible to explore these ad-
vanced characteristics of ML algorithms in a systematic fash-
ion; moreover, it gives layman users the tools to do so. Of
course, not every algorithm can take full advantage of these
optimizations; some are inherently sequential and require
greater consistency, some may not fit the supported MLbase
patterns. Nonetheless, in these cases the ML developer has
the freedom to use common MapReduce operations and re-
strict the applicable optimizations in the ML contract. This
yields an extensible system that is easily updated with new
machine learning techniques while remaining quite usable.

6. RELATED WORK
MLbase is not the first system trying to make machine

learning more accessible, but it is the first to free users
from algorithm choices and to automatically optimize for
distributed execution. Probably most related to MLbase are
Weka [4], MADLib [18], and Mahout [3]. Weka is a collec-
tion of ML tools for data mining that simplifies their usage
by providing a simple UI. Weka, however, requires expert
knowledge to choose and configure the ML algorithm and
is a single node system. On the database and distributed
side, Mahout’s goal is to build a scalable ML library on
top of Hadoop, while MADLib provides an ML library for
relational database systems. Neither system addresses the
(difficult but necessary) challenge of optimizing the learning
algorithms.

Google Predict [2] is Google’s proprietary web-service for
prediction problems, but restricts the maximum training
data-size to 250MB. In [9] the authors make the case that
databases should natively support predictive models and
present a first prototype called Longview. We extend this
vision by supporting all kinds of ML algorithms not just
predictive models. Furthermore, our focus is on the opti-
mization for ML instead of the language integration within
the relational model.

Recently, there have been efforts to build distributed run-
times for more advanced analytical tasks. For example,
Hyracks [11] and AMPLab’s Spark [27] both have special

iterative in-memory operations to better support ML algo-
rithms. In contrast to MLbase, however, they do not have
learning-specific optimizers, nor do they take full advantage
of the characteristics of ML algorithms (e.g., specification of
contracts allowing relaxed consistency). SystemML [17] pro-
poses an R-like language and shows how it can be optimized
and compiled down to MapReduce. However, SystemML
tries to support ML experts to develop efficient distributed
algorithms and does not aim at simplifying the use of ML,
for example, by automatically tuning the training step. Still,
the the ideas of SystemML are compelling and we might
leverage them as part of our physical plan optimization.

Finally, in [14] the authors show how many ML algorithms
can be expressed as a relational-friendly convex-optimization
problem, whereas the authors of [25] present techniques to
optimize inference algorithms in a probabilistic DBMS. We
leverage these techniques in our run-time, but our system
aims beyond a single machine and extends the presented
optimization techniques.

7. CONCLUSION
We described MLbase, a system aiming to make ML more

accessible to non-experts. The core of MLbase is its opti-
mizer, which transforms a declarative ML task into a so-
phisticated learning plan. During this process, the optimizer
tries to find a plan that quickly returns a first quality answer
to the user, allowing MLbase to improve the result itera-
tively in the background. Furthermore, MLbase is designed
to be fully distributed, and it offers a run-time able to ex-
ploit the characteristics of machine learning algorithms. We
are currently in the process of building the entire system.
In this paper, we reported first results showing the potential
of the optimizer as well as the performance advantages of
algorithm-specific execution strategies.

8. ACKNOWLEDGMENTS
This research is supported in part by NSF CISE Expe-

ditions award CCF-1139158, gifts from Amazon Web Ser-
vices, Google, SAP, Blue Goji, Cisco, Cloudera, Ericsson,
General Electric, Hewlett Packard, Huawei, Intel, Microsoft,
NetApp, Oracle, Quanta, Splunk, VMware and by DARPA
(contract #FA8650-11-C-7136).

9. REFERENCES
[1] GML AdaBoost Toolbox.

http://www.inf.ethz.ch/personal/vezhneva/Code/

AdaBoostToolbox_v0.4.zip.

[2] Google Prediction API.
https://developers.google.com/prediction/.

[3] Mahout. http://mahout.apache.org/.

[4] Weka. http://www.cs.waikato.ac.nz/ml/weka/.

[5] ALS Prediction Prize. http://www.prize4life.org/
page/prizes/predictionprize, 2012.

[6] Million Song Dataset Challenge.
http://www.kaggle.com/c/msdchallenge, 2012.

[7] A. Agarwal, P. Bartlett, and J. Duchi. Oracle
inequalities for computationally adaptive model
selection. In Conference on Learning Theory, 2011.

[8] A. Agarwal and J. Duchi. Distributed delayed
stochastic optimization. In Advances in Neural
Information Processing Systems 25, 2011.

[9] M. Akdere, U. Çetintemel, M. Riondato, E. Upfal, and
S. B. Zdonik. The case for predictive database
systems: Opportunities and challenges. In CIDR,
pages 167–174, 2011.

[10] T. Bertin-Mahieux, D. P. Ellis, B. Whitman, and
P. Lamere. The million song dataset. In ISMIR, 2011.

[11] V. R. Borkar et al. Hyracks: A flexible and extensible
foundation for data-intensive computing. In ICDE,
2011.

[12] C.-C. Chang and C.-J. Lin. LIBSVM: A library for
support vector machines. ACM TIST, 2, 2011.

[13] C. Cortes and V. N. Vapnik. Support-Vector
Networks. Machine Learning, 20(3):273–297, 1995.

[14] X. Feng et al. Towards a unified architecture for
in-RDBMS analytics. In SIGMOD, 2012.

[15] Y. Freund and R. E. Schapire. A decision-theoretic
generalization of on-line learning and an application to
boosting. J. Comput. Syst. Sci., 55(1):119–139, 1997.

[16] J. Friedman, T. Hastie, and R. Tibshirani. Additive
logistic regression: a statistical view of boosting.
Annals of Statistics, 28:2000, 1998.

[17] A. Ghoting et al. Systemml: Declarative machine
learning on mapreduce. In Proceedings of the 2011
IEEE 27th International Conference on Data
Engineering, ICDE ’11, pages 231–242, Washington,
DC, USA, 2011. IEEE Computer Society.

[18] J. M. Hellerstein et al. The madlib analytics library or
mad skills, the sql. In PVLDB.

[19] H. Kwak et al. What is twitter, a social network or a
news media? In WWW, 2010.

[20] Y. Low et al. Graphlab: A new framework for parallel
machine learning. In UAI, 2010.

[21] L. Mackey, A. Talwalkar, and M. I. Jordan.
Divide-and-conquer matrix factorization. In NIPS,
2011.

[22] C. Olston et al. Pig latin: a not-so-foreign language
for data processing. In SIGMOD, 2008.

[23] B. Recht et al. Hogwild: A lock-free approach to
parallelizing stochastic gradient descent. In NIPS,
2011.

[24] J. Shawe-Taylor and N. Christianini. Kernel Methods
for Pattern Analysis. Cambridge University Press,
2004.

[25] D. Z. Wang et al. Hybrid in-database inference for
declarative information extraction. In SIGMOD, 2011.

[26] J. Yang and J. Leskovec. Temporal variation in online
media. In WSDM, 2011.

[27] M. Zaharia et al. Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster
computing. In NSDI, 2012.

[28] M. Zukowski et al. Monetdb/x100 - a dbms in the cpu
cache. IEEE Data Eng. Bull., 28(2), 2005.

