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ABSTRACT
It has recently been asserted that the usability of a database
is as important as its capability. Understanding the database
schema, the hidden relationships among attributes in the
data all play an important role in this context. Subscribing
to this viewpoint, in this paper, we present a novel data-
driven approach, called Query By Output (QBO), which can
enhance the usability of database systems. The central goal
of QBO is as follows: given the output of some query Q
on a database D, denoted by Q(D), we wish to construct an
alternative query Q′ such that Q(D) and Q′(D) are instance-
equivalent. To generate instance-equivalent queries from
Q(D), we devise a novel data classification-based technique
that can handle the at-least-one semantics that is inherent in
the query derivation. In addition to the basic framework, we
design several optimization techniques to reduce processing
overhead and introduce a set of criteria to rank order out-
put queries by various notions of utility. Our framework is
evaluated comprehensively on three real data sets and the
results show that the instance-equivalent queries we obtain
are interesting and that the approach is scalable and robust
to queries of different selectivities.

Categories and Subject Descriptors
H.2.4 [System]: Query processing; H.2.8 [Database Ap-
plications]: Data mining

General Terms
Algorithms, Design
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1. INTRODUCTION
A perennial challenge faced by many enterprises is the

management of their increasingly large and complex databases
which can contain hundreds and even thousands of tables
[10, 23]. The problem is exacerbated by the fact that the
metadata and documentation for these databases are often
incomplete or missing [11]. Several different approaches have
been proposed to address this important practical issue. One
example here is database structure mining where the goal
is to discover structural relationships among the database
tables [1, 11, 23]. Another example is intensional query an-
swering where the goal is to augment query answers with
additional information to help users understand the results
as well as relevant database content [15].

In this paper, we present a novel data-driven approach
called Query by Output (QBO). QBO aims to derive interest-
ing query-based characterizations of an input database table
which can be the result of some query or materialized view.
In contrast to conventional querying which takes an input
query Q and computes its output, denoted by Q(D), w.r.t.
an input database D, the basic idea of QBO is to take as
input the output Q(D) of some query Q and compute a
set of queries Q′1, · · · , Q′n such that each Q′i(D) is (approxi-
mately) equivalent to Q(D). We say that two queries Q and
Q′ are instance-equivalent w.r.t. a database D (denoted by
Q ≡D Q′), if Q(D) and Q′(D) are equivalent.

Before we discuss the specific contributions of this paper,
we briefly highlight some of the use-case scenarios of our
proposal.

QBO Applications. The most obvious application of QBO is
in conventional database querying where Q is known. Con-
sider the scenario when a user submits a query Q to be evalu-
ated on a database D. Instead of simply returning the query
result Q(D) to the user, the database system can also apply
QBO to compute additional useful information about Q and D
in the form of instance-equivalent queries. Besides provid-
ing alternative characterizations (potential simplifications)
of Q(D), IEQs can also help users to better understand the
database schema. Specifically, since many enterprise data
schema are very complex and large, potentially involving
hundreds and even thousands of relations [23], the part of
the database schema that is referenced by the user’s query
may be quite different from that referenced by an IEQ. The
discovery of this alternative“path” in the schema to generate
an instance-equivalent query can aid the user’s understand-
ing of the database schema or potentially help refine the
user’s initial query.

Another obvious application of QBO is that it can help
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the user better understand the actual data housed within
the database. Unusual or surprising IEQs can be useful for
uncovering hidden relationships among the data. In several
instances simpler or easier to understand relationships may
be uncovered which can again aid in the understanding of
the data contained within the complex database and help
the user refine future queries posed to the database.
QBO may also have interesting applications in database se-

curity where attackers who have some prior domain knowl-
edge of the data may attempt to derive sensitive informa-
tion. For example, if an attacker is aware of the existing
correlation structure in the data, they can easily use this in-
formation to formulate two or more separate queries which
on paper look very different (e.g. using different selection
criteria) but in reality may be targeting the same set of tu-
ples in the database. Such sets or groups of queries can
potentially be used to reverse-engineer the privacy preserv-
ing protocol in use. Subsequently, sensitive information can
be gleaned. As a specific example, consider a protocol such
as ε-diversity [24] which relies on detecting how similar the
current query is with a previous set of queries (history) an-
swered by the database, to determine if the current query
can be answered without violating the privacy constraints.
The notion of similarity used by such methods relies primar-
ily on the selection attributes and thus such protocols will
fail to recognize IEQs that use different selection attributes.
Privacy in such protocols will then be breached. Automat-
ically recognizing such IEQs via the methods proposed in
this paper and subsequently leveraging this information to
enhance such protocols may provide more stringent protec-
tion against such kinds of attacks.

Another important class of QBO applications is in scenar-
ios where the input consists of Q(D) but not Q itself. Such
scenarios are common in data analysis and exploration appli-
cations where the information provided is often incomplete:
the data set Q(D), which is produced by some query/view
Q, is available but not the query/view [11]. The ability
to reverse engineer Q from Q(D) then becomes important.
Annotating data with relevant metadata is essential in cu-
rated databases [6]. Such reverse engineering is also useful
for generating concise query-based summaries of groups of
tuples of interest to the user (e.g., dominant tuples selected
by skyline queries [4]).

Contributions. In this paper, we introduce the novel prob-
lem of QBO and propose a solution, TALOS, that models the
QBO problem as a data classification task with a unique prop-
erty that we term at-least-one semantics. To handle data
classification with this new semantics, we develop a new
dynamic class labeling technique and also propose effective
optimization techniques to efficiently compute IEQs. Our
experimental evaluation of TALOS demonstrates its efficiency
and effectiveness in generating interesting IEQs.

2. OVERVIEW OF OUR APPROACH
The QBO problem takes as inputs a database D, an op-

tional query Q, and the query’s output Q(D) (w.r.t. D)
and computes one or more IEQs Q′, where Q and Q′ are
IEQs if Q(D) ≡D Q′(D). We refer to Q as the input query,
Q(D) as the input result, and Q′ as the output query.

First, let us state the following theoretical results that we
have established for variants of the QBO problem.

Theorem 1. Given an input query Q, we define QBOS

to be the problem to find the output query Q′ where Q′ is a
conjunctive query that involves only projection and selection
(with predicates in the form “Ai op c”, Ai is an attribute,
c is constant and op ∈ {<,≤, =, 6=, >,≥}) such that (1):
Q′(D) ≡D Q(D) and (2) the number of operators (AND,
OR and NOT) used in the selection condition is minimized.
Then QBOS is unlikely to be in P .

Proof Sketch: We prove Theorem 1 by reducing the Min-
imization Circuit Size Problem to QBOS . Details are given
in [20]. 2

Theorem 2. Given an input query Q, we define QBOG

to be the problem to find an output query Q′ such that Q′(D) ≡D

Q(D) and Q′ can contain arbitrary arithmetic expressions in
the select-clause. Then QBOG is PSPACE-hard.

Proof Sketch: We prove Theorem 2 by reducing the Inte-
ger Circuit Evaluation Problem to QBOG. Details are given
in [20]. 2

Given the above results, in this paper, we consider re-
lational queries Q where the select-clause refer to only at-
tributes (and not to constants or arithmetic/aggregation/string
expressions) to ensure that Q′ can be derived efficiently from
Q(D). We also require that Q(D) 6= ∅ for the problem to be
interesting.

For simplicity, our approach considers only select-project-
join (SPJ) queries for Q′ where all the join predicates in Q′

are foreign-key joins. Thus, our approach requires only very
basic database integrity constraint information (i.e., primary
and foreign key constraints). Based on the knowledge of
the primary and foreign key constraints in the database, the
database schema can be modeled as a schema graph, denoted
by SG, where each node in SG represents a relation, and
each edge between two nodes represents a foreign-key join
between the relations corresponding to the nodes.

For ease of presentation and without loss of generality,
we express each Q′ as a relational algebra expression. To
keep our definitions and notations simple and without loss
of generality, we shall assume that there are no multiple
instances of a relation in Q and Q′.

Running Example. In this paper, we use a database hous-
ing baseball statistics1 for our running example as well as
in our experiments. Part of the schema is illustrated in
Figure 1, where the key attribute names are shown in bold.
The Master relation describes information about each player
(identified by pID): the attributes name, country, weight,
bats, and throws refer to his name, birth country, weight (in
pounds), batting hand (left, right, or both), and throwing
hand (left or right), respectively. The Batting relation pro-
vides the number of home runs (HR) of a player when he
was playing for a team in a specific year and season (stint).
The Team relation specifies the rank obtained by a team for
a specified year.

Notations. Given a query Q, we use rel(Q) to denote
the collection of relations involved in Q (i.e., relations in
SQL’s from-clause); proj(Q) to denote the set of projected
attributes in Q (i.e., attributes in SQL’s select-clause); and
sel(Q) to denote the set of selection predicates in Q (i.e.,
conditions in SQL’s where-clause).

1http://baseball1.com/statistics/
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pID name country weight bats throws
P1 A USA 85 L R
P2 B USA 72 R R
P3 C USA 80 R L
P4 D Germany 72 L R
P5 E Japan 72 R R

pID year stint team HR
P1 2001 2 PIT 40
P1 2003 2 ML1 50
P2 2001 1 PIT 73
P2 2002 1 PIT 40
P3 2004 2 CHA 35
P4 2001 3 PIT 30
P5 2004 3 CHA 60

team year rank
PIT 2001 7
PIT 2002 4
CHA 2004 3

(a) Master (b) Batting (c) Team

Figure 1: Running Example: Baseball Data Set D

2.1 Instance-Equivalent Queries (IEQs)
Our basic definition of instance-equivalent queries (IEQs)

requires that the IEQs Q and Q′ produce the same output
(w.r.t. some database D); i.e., Q(D) ≡D Q′(D). The advan-
tage of this simple definition is that it does not require the
knowledge of Q to derive Q′, which is particularly useful for
QBO applications where Q is either missing or not provided.
However, there is a potential “accuracy” tradeoff that arises
from the simplicity of this weak form of equivalence: an IEQ
may be “semantically” quite different from the input query
that produced Q(D) as the following example illustrates.

Example 1. Consider the following three queries on the
baseball database D in Figure 1:

Q1 = πcountry(σbats=“R”∧throws=“R”(Master)),
Q2 = πcountry(σbats=“R”∧weight≤72(Master)), and
Q3 = πcountry(σbats=“R”(Master)).
Observe that although all three queries produce the same

output after projection ({USA,Japan}), only Q1 and Q2 se-
lect the same set of tuples {P2, P5} from R. Specifically, if
we modify the queries by replacing the projection attribute
“country” with the key attribute “pID”, we have Q1(D) =
{P2,P5}, Q2(D) = {P2,P5} and Q3(D) = {P2,P3,P5}.
Thus, while all three queries are IEQs, we see that the equiv-
alence between Q1 and Q2 is actually “stronger” (compared
to that between Q1 and Q3) in that both queries actually
select the same set of relation tuples. 2

However, if Q is provided as part of the input, then we
can define a stronger form of instance equivalence as sug-
gested by the above example. Intuitively, the stricter form
of instance equivalence not only ensures that the instance-
equivalent queries produce the same output (w.r.t. some
database D), but it also requires that their outputs be pro-
jected from the same set of “core” tuples. We now formally
characterize weak and strong IEQs based on the concepts of
core relations and core queries.

Core relations. Given a query Q, we say that S ⊆ rel(Q)
is a set of core relations of Q if S is a minimal set of relations
such that for every attribute Ri.A ∈ proj(Q), (1) Ri ∈ S or
(2) Q contains a chain of equality join predicates “Ri.A =
· · · = Rj .B” such that Rj ∈ S.

Intuitively, a set of core relations of Q is a minimal set
of relations in Q that “cover” all the projected attributes in
Q. As an example, if Q = πR1.Xσp(R1 × R2 × R3) where
p = (R1.X = R3.Y ) ∧ (R2.Z = R3.Z), then Q has two sets
of core relations, {R1} and {R3}.
Core queries. Given a query Q where S ⊆ rel(Q), we use
QS to denote the query that is derived from Q by replacing
proj(Q) with the key attribute(s) of each relation in S. If S
is a set of core relations of Q, we refer to QS as a core query
of Q.

Strong & weak IEQs. Consider two IEQs Q and Q′ (w.r.t.
a database D); i.e., Q(D) ≡D Q′(D). We say that Q and Q′

are strong IEQs if Q has a set of core relations S such that
(1) Q′S is a core query of Q′, and (2) QS(D) and Q′S(D)
are equivalent. IEQs that are not strong are classified as
weak IEQs.

The strong IEQ definition essentially requires that both
Q and Q′ share a set of core relations such that Q(D) and
Q′(D) are projected from the same set of selected tuples
from these core relations. Thus, in Example 1, Q1 and Q2

are strong IEQs whereas Q1 and Q3 are weak IEQs.
Note that in our definition of strong IEQ, we only impose

moderate restrictions on Q and Q′ (relative to the weak IEQ
definition) so that the space of strong IEQs is not overly con-
strained and that the strong IEQs generated are hopefully
both interesting as well as meaningful.

As in the case with weak IEQs, two strong IEQs can in-
volve different sets of relations. As an example, suppose
query Q selects pairs of records from two core relations, Sup-
plier and Part, that are related via joining with a (non-core)
Supply relation. Then it is possible for a strong IEQ Q′ to
relate the same pair of core relations via a different relation-
ship (e.g., by joining with a different non-core Manufacture
relation).

We believe that each of the various notions of query equiv-
alence has useful applications in different contexts depending
on the available type of information about the input query
and database. At one extreme, if both Q and the database
integrity constraints are available, we can compute semanti-
cally equivalent queries. At the other extreme, if only Q(D)
and the database D are available, we can only compute weak
IEQs. Finally, if both Q and the database D are available,
we can compute both weak and strong IEQs.

Precise & approximate IEQs. It is also useful to per-
mit some perturbation so as to include IEQs that are “close
enough” to the original. Perturbations could be in the form
of extra records or missing records or a combination thereof.
Such generalizations are necessary in situations where there
are no precise IEQs and useful for cases where the computa-
tional cost for finding precise IEQs is considered unaccept-
ably high. Moreover, a precise IEQ Q′ might not always pro-
vide insightful characterizations of Q(D) as Q′ could be too
“detailed” with many join relations and/or selection predi-
cates.

The imprecision of a weak IEQ Q′ of Q (w.r.t. D) can be
quantified by |Q(D)−Q′(D)| + |Q′(D)−Q(D)|; the impreci-
sion of a strong IEQ can be quantified similarly. Thus, Q′ is
considered an approximate (strong/weak) IEQ of Q if its im-
precision is positive; otherwise, Q′ is a precise (strong/weak)
IEQ.

As the search space for IEQs can be very large, particu-
larly with large complex database schema where each rela-
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tion has foreign-key joins with other relations, users should
be able to restrict the search space by specifying hints/ pref-
erences in the form of control parameters. Some examples
include: (1) restricting Q′ to be conjunctive queries, (2) set-
ting an upper bound on the number of selection predicates
in Q′, (3) setting an upper bound on the number of relations
in Q′, (4) specifying a specific set of relations to be included
(excluded) in (from) Q′, and (5) specifying a specific set of
attributes to be included (excluded) in (from) the selection
predicates in Q′. In addition to these query-specific con-
trols, some method-specific controls can also be applied on
the IEQs search space; we discuss some of these in Section 4.
We note although all the above user hints can be easily in-
corporated into our proposed algorithms, we do not delve
on these control knobs any further in the paper but instead
focus on the core problem of computing IEQs.

2.2 TALOS: Conceptual Approach
In this section, we give a conceptual overview of our ap-

proach, named TALOS (for Tree-based classifier with At Least
One Semantics), for the QBO problem.

Given an input result Q(D), to generate a SPJ Q′ that
is an IEQ of Q, we need to basically determine the three
components of Q′: rel(Q′), sel(Q′), and proj(Q′). Clearly,
if rel(Q′) contains a set of core relations of Q, then proj(Q′)
can be trivially derived from these core relations2. Thus, the
possibilities for Q′ depends mainly on the options for both
rel(Q′) and sel(Q′). Between these two components, enu-
merating different rel(Q′) is the easier task as rel(Q′) can
be obtained by choosing a subgraph G of the schema graph
SG such that G contains a set of core relations of Q: rel(Q′)
is then given by all the relations represented in G. Note that
it is not necessary for rel(Q) ⊆ rel(Q′) as Q may contain
some relations that are not core relations. The reason for ex-
ploring different possibilities for rel(Q′) is to find interesting
alternative characterizations of Q(D) that involve different
join paths or selection conditions from those in Q. TALOS

enumerates different schema subgraphs by starting out with
minimal subgraphs that contain a set of core relations of Q
and then incrementally expanding the minimal subgraphs to
generate larger, more complex subgraphs.

We now come to most critical and challenging part of our
solution which is how to generate “good” sel(Q′)’s such that
each sel(Q′) is not only succinct (without too many con-
ditions) and insightful but also minimizes the imprecision
between Q(D) and Q′(D) if Q′ is an approximate IEQ. We
propose to formulate this problem as a data classification
task as follows.

Consider the relation J that is computed by joining all
the relations in rel(Q′) based on the foreign-key joins rep-
resented in G. Without loss of generality, let us suppose
that we are looking for weak IEQs Q′. Let L denote the
ordered listing of the attributes in proj(Q′) such that that
the schema of πL(J) and Q(D) are equivalent3. J can be
partitioned into two disjoint subsets, J = J0 ∪ J1, such that

2Note that even though the definition of a weak IEQ Q′ of Q
does not require the queries to share a set of core relations,
we find this restriction to be a reasonable and effective way
to obtain “good” IEQs.
3If the search is for strong IEQs, then the discussion remains
the same except that L is the ordered listing of the key
attributes of a set of core relations S of Q, and we replace
Q(D) by QS(D).

πL(J1) ⊆ Q(D) and πL(J0)∩Q(D) = ∅. For the purpose of
deriving sel(Q′), one simple approach to classify the tuples
in J is to label the tuples in J0, which do not contribute
to the query’s result Q(D), as negative tuples, and label the
tuples in J1 as positive tuples.

Given the labeled tuples in J , the problem of finding a
sel(Q′) can now be viewed as a data classification task to
separate the positive and negative tuples in J : sel(Q′) is
given by the selection conditions that specify the positive
tuples. A natural solution is to examine if off-the-shelf data
classifier can give us what we need. To determine what kind
of classifier to use, we must consider what we need to gener-
ate our desired IEQ Q′. Clearly, the classifier should be effi-
cient to construct and the output should be easy to interpret
and express using SQL; i.e., the output should be express-
ible in axis parallel cuts of the data space. These criteria
rule out a number of classifier systems such as neural net-
works, k-nearest neighbor classification, Bayesian classifiers,
and support vector machines [16]. Rule based classifiers or
decision trees (a form of rule-based classifier) are a natural
solution in this context. TALOS uses decision tree classifier
for generating sel(Q′).

We now briefly describe how a simple binary decision tree
is constructed to classify a set of data records D. For ex-
pository simplicity, assume that all the attributes in D have
numerical domains. A decision tree DT is constructed in a
top-down manner. Each leaf node N in the tree is associ-
ated with a subset of the data records, denoted by DN , such
that D is partitioned among all the leaf nodes. Initially, DT
has only a single leaf node (i.e., its root node) which is as-
sociated with all the records in D. Leaf nodes are classified
into pure and non-pure nodes depending on a given good-
ness criterion. Common goodness criteria include entropy,
classification error and the Gini index [16]. At each iteration
of the algorithm, the algorithm examines each non-pure leaf
node N and computes the best split for N that creates two
child nodes, N1 and N2, for N . Each split is computed as a
function of an attribute A and a split value v associated with
the attribute. Whenever a node N is split (w.r.t. attribute
A and split value v), the records in DN are partitioned be-
tween DN1 and DN2 such that a tuple t ∈ DN is distributed
into DN1 if t.A ≤ v; and DN2 , otherwise.

A popular goodness criterion for splitting, the Gini index,
is computed as follows. For a data set S with k distinct
classes, its Gini index is Gini(S) = 1 − ∑k

j=1(f
2
j ) where

fj denote the fraction of records in S belonging to class j.
Thus, if S is split into two subsets S1, S2, then the Gini
index of the split is given by

Gini(S1, S2) =
|S1| Gini(S1) + |S2| Gini(S2)

|S1|+ |S2| ,

where |Si| denote the number of records in Si. The general
objective is to pick the splitting attribute whose best split-
ting value reduces the Gini index the most (the goal is to
reduce Gini to 0 resulting in all pure leaf nodes).

Example 2. To illustrate how decision tree classifier can
be applied to derive IEQs, consider the following query on
the baseball database D: Q4 = πname (σbats=“R”∧throws=“R”

Master). Note that Q4(D) = {B, E}. Suppose that the
schema subgraph G considered contains both Master and
Batting; i.e., rel(Q′4) = {Master,Batting}. The output of
J = Master ./pID Batting is shown in Figure 2(a). Us-
ing ti to denote the ith tuple in J , J is partitioned into
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pID name country weight bats throws year team stint HR
P1 A USA 85 L R 2001 PIT 2 40
P1 A USA 85 L R 2003 ML1 2 50
P2 B USA 72 R R 2001 PIT 1 73
P2 B USA 72 R R 2002 PIT 1 40
P3 C USA 80 R L 2004 CHA 2 35
P4 D Germany 72 L R 2001 PIT 3 30
P5 E Japan 72 R R 2004 CHA 3 60

(a) J = Master ./pID Batting

N1

N2 N3

stint   1 stint > 1

DT1

{ t3, t4 }

{ t7 }

N2 N3

HR   50 HR > 50

{ t1, t2, t5, t6 }

N1

N2 N3

HR   50 HR > 50

DT2

{ t1, t2, t4, t5, t6 } { t3, t7 }

(b) Decision trees DT1 and DT2

Figure 2: Example of deriving IEQs for Q4 = πname (σbats=“R”∧throws=“R” Master) on D

J0 = {t1, t2, t5, t6} and J1 = {t3, t4, t7}. Figure 2(b) shows
two example decision trees, DT1 and DT2, constructed from
J . Each decision tree partitions the tuples in J into differ-
ent subsets (represented by the leaf nodes) by applying differ-
ent sequences of attribute selection conditions. By labeling
all tuples in J1 as positive, the IEQ derived from DT1 is
given by Q′4 = πname(σstint≤1∨(stint>1∧HR>50) (Master ./
Batting)). More details are described in Section 4.1. 2

2.3 TALOS: Challenges
There are two key challenges in adapting decision tree

classifier for the QBO problem.

At Least One Semantics. The first challenge concerns
the issue of how to assign class labels in a flexible manner
without over constraining the classification problem and lim-
iting its effectiveness. Contrary to the impression given by
the above simple class labeling scheme, the task of assigning
class labels to J is actually a rather intricate problem due
to the fact that multiple tuples in J1 can be projected to the
same tuple in πL(J1). Recall that in the simple class label-
ing scheme described, a tuple t is labeled positive iff t ∈ J1.
However, note that it is possible to label only a subset of
tuples J ′1 ⊆ J1 as positive (with tuples in J − J ′1 labeled
as negative) and yet achieve πL(J ′1) = πL(J1) (without af-
fecting the imprecision of Q′). In other words, the simple
scheme of labeling all tuples in J1 as positive is just one
(extreme) option out of many other possibilities.

We now discuss more precisely the various possibilities
of labeling positive tuples in J to derive different sel(Q′).
Let πL(J1) = {t1, · · · , tk}. Then J1 can be partitioned into
k subsets, J1 = P1 ∪ · · · ∪ Pk, where each Pi = {t ∈
J1 | the projection of t on L is ti}. Thus, each Pi represents
the subset of tuples in J1 that project to the same tuple in
πL(J1). Define J ′1 to be a subset of tuples of J1 such that it
consists of at least one tuple from each subset Pi. Clearly,
πL(J ′1) = πL(J1), and there is a total of

∏k
i=1(2

|Pi| − 1)
possibilities for J ′1. For a given J ′1, we can derive sel(Q′)
using a data classifier based on labeling the tuples in J ′1 as
positive and the remaining tuples in J1 − J ′1 as negative.

Based on the above discussion on labeling tuples, each
tuple in J can be classified as either a bound tuple or free

tuple depending on whether there is any freedom to label
the tuple. A tuple t ∈ J is a bound tuple if either (1) t ∈ J0

in which case t must be labeled negative, or (2) t is the only
tuple in some subset Pi, in which case t must certainly be
included in J ′1 and be labeled positive; otherwise, t is a free
tuple (i.e., t is in some subset Pi that contains more than
one tuple).

In contrast to conventional classification problem where
each record in the input data comes with a well defined
class label, the classification problem formulated for QBO has
the unique characteristic where there is some flexibility in
the class label assignment. We refer to this property as at-
least-one semantics. To the best of our knowledge, we are
not aware of any work that has addressed this variant of the
classification problem.

An obvious approach to solve the at-least-one semantics
variant is to map the problem into the traditional variant
by first applying some arbitrary class label assignment that
is consistent with the at-least-one semantics. In our exper-
imental study, we compare against two such static labeling
schemes, namely, NI, which labels all free tuples as positive,
and RD, which labels a random non-empty subset of free tu-
ples in each Pi as positive4. However, such static labeling
schemes do not exploit the flexible class labeling opportuni-
ties to optimize the classification task. To avoid the limita-
tions of the static scheme, TALOS employs a novel dynamic
class labeling scheme to compute optimal node splits for de-
cision tree construction without having to enumerate an ex-
ponential number of combinations of class labeling schemes
for the free tuples.

Example 3. Continuing with Example 2, J1 is partitioned
into two subsets: P1 = {t3, t4} and P2 = {t7}, where P1 and
P2 contribute to the outputs “B” and “E”, respectively. The
tuples in J0 and P2 are bound tuples, while the tuples in P1

are free tuples. To derive an IEQ, at least one of the free
tuples in P1 must be labeled positive. If t3 is labeled positive
and t4 is labeled negative, DT2 in Figure 2(b) is a simpler

4We also experimented with a scheme that randomly labels
only one free tuple for each subset as positive, but the results
are worse than NI and RD.
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decision tree constructed by partitioning J based on a selec-
tion predicate on attribute HR. The IEQ derived from DT2

is Q
′′
4 = πname σHR>50 (Master ./ Batting). 2

Performance Issues. The second challenge concerns the
performance issue of how to efficiently generate candidates
for rel(Q′) and optimize the computation of the single in-
put table J required for the classification task. To improve
performance, TALOS exploits join indices to avoid a costly
explicit computation of J and constructs mapping tables to
optimize decision tree construction.

3. HANDLING AT-LEAST-ONE SEMANTICS
In this section, we address the first challenge of TALOS

and present a novel approach for classifying data with the
at-least-one semantics.

3.1 Computing Optimal Node Splits
The main challenge for classification with the at-least-one

semantics is how to optimize the node splits given the pres-
ence of free tuples which offer flexibility in the class label
assignment. We present a novel approach that computes
the optimal node split without having to explicitly enumer-
ate all possible class label assignments to the free tuples.
The idea is based on exploiting the flexibility offered by the
at-least-one semantics.

Let us consider an initial set of tuples S that has been
split into two subsets, S1 and S2, based on a value v of a
numeric attribute A (the same principle applies to categor-
ical attributes as well); i.e., a tuple t ∈ S belongs to S1

iff t.A ≤ v. The key question is how to compute the op-
timal Gini index of this split without having to enumerate
all possible class label assignments for the free tuples in S
such that the at-least-one semantics is satisfied. Without
loss of generality, suppose that the set of free tuples in S
is partitioned (as described in Section 2.3) into m subsets,
P1, · · · , Pm, where each |Pi| > 1.

Let ni,j denote the number of tuples in Pi ∩ Sj , and fj

denote the number of free tuples in Sj to be labeled positive
to minimize Gini(S1, S2), where i ∈ [1, m], j ∈ {1, 2}. We
classify Pi, i ∈ [1, m], as a SP1-set (resp. SP2-set) if Pi is
completely contained in S1 (resp. S2); otherwise, Pi is a
SP12-set (i.e., ni,1 > 0 and ni,2 > 0).

To satisfy the at-least-one semantics, we need to ensure
that at least one free tuple in each Pi, i ∈ [1, m], is labeled
positive. Let Tj , j ∈ {1, 2}, denote the minimum number
of free tuples in Sj that must be labeled positive to ensure
this. Observe that for a specific Pi, i ∈ [1, m], if Pi a SP1-set
(resp. SP2-set), then we must have T1 ≥ 1 (resp. T2 ≥ 1).
Thus, Tj is equal to the number of SPj-sets. More precisely,
Tj =

∑m
i=1 max{0, 1− ni,3−j}, j ∈ {1, 2}.

Thus, f1 and f2 must satisfy the following two conditions:

(A1) Tj ≤ fj ≤
∑m

i=1 ni,j , j ∈ {1, 2}; and

(A2) f1 + f2 ≥ m.

Condition (A1) specifies the possible number of free tuples to
be labeled positive for each Sj , while condition (A2) specifies
the minimum combined number of tuples in S to be labeled
positive in order that the at-least-one semantics is satisfied
for each Pi.

Based on conditions (A1) and (A2), it can be shown that
the optimal value of Gini(S1, S2) can be determined by con-
sidering only five combinations of f1 and f2 values as indi-
cated by the second and third columns in Table 1. The proof
of this result is given elsewhere [20]. These five cases cor-
respond to different combinations of whether the number of
positive or negative tuples is being maximized in each of S1

and S2: case C1 maximizes the number of positive tuples in
both S1 and S2; case C2 maximizes the number of positive
tuples in S1 and maximizes the number of negative tuples
in S2; case C3 maximizes the number of negative tuples in
S1 and maximizes the number of positive tuples in S2; and
cases C4 and C5 maximize the number of negative tuples in
both S1 and S2. The optimal value of Gini(S1, S2) is given
by the minimum of the Gini index values derived from the
above five cases.

3.2 Updating Labels & Propagating Constraints
Once the optimal Gini(S1, S2) index is determined for a

given node split, we need to update the split of S by con-
verting the free tuples in S1 and S2 to bound tuples with
either positive/negative class labels. The details of this up-
dating depends on which of the five cases the optimal Gini
value was derived from, and is summarized by the last four
columns in Table 1.

For case C1, which is the simplest case, all the free tuples
in S1 and S2 will be converted to positive tuples. However,
for the remaining cases, which involve maximizing the num-
ber of negative tuples in S1 or S2, some of the free tuples may
not be converted to bound tuples. Instead, the maximiza-
tion of negative tuples in S1 or S2 is achieved by propagating
another type of constraints, referred to as “exactly-one” con-
straints, to some subsets of tuples in S1 or S2. Similar to
the principle of at-least-one constraints, the idea here is to
make use of constraints to optimize the Gini index values for
subsequent node splits without having to explicitly enumer-
ate all possible class label assignments. Thus, in Table 1,
the fourth and fifth columns specify which free tuples are
to be converted to bound tuples with positive and negative
labels, respectively; where an ‘-’ entry means that no free
tuples are to be converted to bound tuples. The sixth and
seventh columns specify what subsets of tuples in S1 and
S2, respectively, are required to satisfy the exactly-one con-
straint; where an ‘-’ entry column means that no constraints
are propagated to S1 or S2.

We now define the exactly-one constraint and explain why
it is necessary. An exactly-one constraint on a set of free
tuples S′ requires that exactly one free tuple in S′ must be-
come labeled as positive with the remaining free tuples in S′

labeled as negative. Consider case C2, which is to maximize
the number of positive (resp. negative) tuples in S1 (resp.
S2). The maximization of the number of positive tuples in
S1 is easy to achieve since by converting all the free tuples
in S1 to positive, the at-least-one constraints on the SP1-
sets and SP12-sets are also satisfied. Consequently, for each
SP12-set Pi, all the free tuples in Pi ∩ S2 can be converted
to negative tuples (to maximize the number of negative tu-
ples in S2) without violating the at-least-one constraint on
Pi. However, for a SP2-set Pi, to maximize the number
of negative tuples in Pi while satisfying the at-least-one se-
mantics translates to an exactly-one constraint on Pi. Thus,
for case C2, an exactly-one constraint is propagated to each
SP2-set in S2, and no constraints are propagated to S1. A
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Number of free tuples Exactly-One
to be labeled positive Labeling of free tuples Constraint Propagation

Case f1 f2 positive negative S1 S2

C1
∑m

i=1 ni,1

∑m
i=1 ni,2 S1 ∪ S2 - - -

C2
∑m

i=1 ni,1 T2 S1 SP12-sets in S2 - SP2-sets
C3 T1

∑m
i=1 ni,2 S2 SP12-sets in S1 SP1-sets -

C4 T1 m− T1 - SP12-sets in S1 SP1-sets All subsets
C5 m− T2 T2 - SP12-sets in S2 All subsets SP2-sets

Table 1: Optimizing Node Splits

similar reasoning applies to cases C3 to C5. Thus, while
the at-least-one constraint is applied to each subset of free
tuples Pi in the initial node split, the exactly-one constraint
is applied to each Pi for subsequent node splits. This sec-
ond variant of the node split problem can be optimized by
techniques similar to what we have explained so far for the
first variant. In particular, the first condition (A1) for f1

and f2 remains unchanged, but the second condition (A2)
becomes f1 +f2 = m. Consequently, the optimization of the
Gini index value becomes simpler and only needs to consider
cases C4 and C5.

Example 4. To illustrate how class labels are updated
and how constraints are propagated during a node split, con-
sider the following query on the baseball database D: Q5 =
πstint (σcountry=“USA” Master./pID Batting). Suppose that
the weak-IEQ Q′5 being considered has rel(Q′5) = {Master,
Batting}. Let J = Master./pID Batting (shown in Fig-
ure 2(a)). Since Q5(D) = {1, 2}, we have J0 = {t6, t7},
P1 = {t1, t2, t5} (corresponding to stint = 2) and P2 =
{t3, t4} (corresponding to stint = 1). The tuples in J0 are
labeled negative, while the tuples in P1 and P2 are all free
tuples.

Suppose that the splitting attribute considered is “weight”,
and the optimal splitting value for“weight” is 72. The Gini(S1,
S2) values computed (w.r.t. “weight = 72”) for the five
cases, C1 to C5, are 0.29, 0.48, 0.21, 0.4 and 0.4, respec-
tively. Thus, the optimal value of Gini(S1, S2) is 0.21 (due
to case C3). We then split tuples with weight ≤ 72 (i.e.,
{t3, t4, t6, t7}) into S1 and tuples with weight > 72 (i.e.,
{t1, t2, t5}) into S2. Thus, P1 is a SP2-set while P2 is a SP1-
set. Since the optimal Gini index computed is due to case
C3 (i.e., maximizing negative tuples in S1 and maximizing
positive tuples in S2), all the free tuples in S2 (i.e., t1, t2
and t5) are labeled positive, and an exactly-one constraint is
propagated to the set of tuples P2 ∩ S1 (i.e., {t3, t4}). 2

In summary, TALOS is able to efficiently compute the opti-
mal Gini index value for each attribute split value considered
without enumerating an exponential number of class label
assignments for the free tuples.

4. OPTIMIZING PERFORMANCE
In this section, we first explain how TALOS adapts a well-

known decision tree classifier for performing data classifica-
tion in the presence of free tuples where their class labels
are not fixed. We then explain the performance challenges
of deriving Q′ when rel(Q′) involves multiple relations and
present optimization techniques to address these issues. For
ease of presentation and without loss of generality, the dis-
cussion here assumes weak IEQs.

4.1 Classifying Data in TALOS
We first give an overview of SLIQ [13], a well-known deci-

sion tree classifier, that we have chosen to adapt for TALOS.
We then describe the extensions required by TALOS to han-
dle data classfication in the presence of free tuples. Finally,
we present a non-optimized, naive variant of TALOS. It is im-
portant to emphasize that our approach is orthogonal to the
choice of the decision tree technique.

Overview of SLIQ. To optimize the decision tree construc-
tion on a set of data records D, SLIQ uses two key data
structures. First, a sorted attribute list, denoted by ALi,
is pre-computed for each attribute Ai in D. Each ALi can
be thought of as a two-column table (val, row), of the same
cardinality as D, that is sorted in non-descending order of
val. Each record r = (v, i) in ALi corresponds to the ith

tuple t in D, and v = t.Ai. The sorted attribute lists are
used to speed up the computation of optimal node splits. To
determine the optimal node split w.r.t. Ai requires a single
sequential scan of ALi.

Second, a main-memory array called class list, denoted
by CL, is maintained for D. This is a two-column table
(nid, cid) with one record per tuple in D. The ith entry in
CL, denoted by CL[i], corresponds to the ith tuple t in D,
where CL[i].nid is the identifier of leaf node N , t ∈ DN , and
CL[i].cid refers to the class label of t. CL is used to keep
track of the tuples location (i.e., in which leaf nodes) as leaf
nodes are split.

Class List Extension. In order to support data classifi-
cation with free tuples, where their class labels are assigned
dynamically, we need to extend SLIQ with the following mod-
ification. The class list table CL(nid, cid, sid) is extended
with an additional column “sid”, which represents a subset
identifier, to indicate which subset (i.e., Pi) a tuple belongs
to. This additional information is needed to determine the
optimal Gini index values as discussed in the previous sec-
tion. Consider a tuple t which is the ith tuple in D. The
cid and sid values in CL are maintained as follows: if t be-
longs to J0, then CL[i].cid = 0 and CL[i].sid = 0; if t is a
bound tuple in Pj , then CL[i].cid = 1 and CL[i].sid = j;
otherwise, if t is a free tuple in Pj , then CL[i].cid = −1 and
CL[i].sid = j.

Example 5. Figure 3 shows some data structures cre-
ated for computing IEQs for Q4(D). Figure 3(a) shows the
attribute list created for attribute Master.name; and Fig-
ure 3(d) shows the initial class list created for Jhub, where
all the records are in a single leaf node (with nid value of 1).

2

Naive TALOS. Before presenting the optimizations for TA-
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val row
A 1
B 2
C 3
D 4
E 5

rM rB rT

1 1 1
2 3 1
2 4 2
3 5 3
4 6 1
5 7 3

rM SrJ
1 {1}
2 {2, 3}
3 {4}
4 {5}
5 {6}

nid cid sid
1 0 0

1 -1 1
1 -1 1

1 0 0
1 0 0
1 1 2

(a) ALname (b) Jhub (c) MMaster (d) CL

Figure 3: Example data structures for Q4(D)

LOS in the next section, let us first describe a non-optimized,
naive variant of TALOS (denoted by TALOS-). Suppose that
we are considering an IEQ Q′ where rel(Q′) = {R1, · · · , Rn},
n > 1, that is derived from some schema subgraph G. First,
TALOS- joins all the relations in rel(Q′) (based on the foreign-
key joins represented in G) to obtain a single relation J .
Next, TALOS- computes attribute lists for the attributes in
J and a class list for J . TALOS- is now ready to construct
a decision tree DT to derive the IEQ Q′ with these struc-
tures. DT is initialized with a single leaf node consisting of
the records in J , which is then refined iteratively by split-
ting the leaf nodes in DT . TALOS- terminates the splitting
of a leaf node when (1) its tuples are either all labeled pos-
itive or all labeled negative; or (2) its tuples have the same
attribute values w.r.t. all the splitting attributes. Finally,
TALOS- classifies each leaf node in DT as positive or negative
as follows: a leaf node is classified as positive if and only if
(1) all its tuples are labeled positive, or (2) the ratio of the
number of its positive tuples to the number of its negative
tuples is no smaller than a threshold value given by τ . In
our experiments, we set τ = 1. sel(Q′) is then derived from
the collection of positive leaf nodes in DT as follows. Each
set of tuples in a positive leaf node is specified by a selection
predicate that is a conjunction of the predicates along the
path from the root node to that leaf node, and the set of
tuples in a collection of positive leaf nodes is specified by a
selection predicate that is a disjunction of the selection pred-
icate for each selected leaf node. In the event that all the
leaf nodes in DT are classified as negative, the computation
of Q′ is not successful (i.e., there is no IEQ for rel(Q′)) and
we refer to Q′ as a pruned IEQ.

4.2 Optimizations
The naive TALOS described in the previous section suf-

fers from two drawbacks. First, the overhead of computing
J can be high especially if there are many large relations
in rel(Q′). Second, since the cardinality of J can be much
larger than the cardinality of each of the relations in rel(Q′),
building decision trees directly using J entails the compu-
tation and scanning of correspondingly large attribute lists
which further increases the computation cost. In the rest of
this section, we present the optimization techniques used by
TALOS to address the above performance issues.

Join Indices & Hub Table. To avoid the overhead of
computing J from rel(Q′), TALOS exploits pre-computed join
indices [21] which is a well-known technique for optimizing
joins. For each pair of relations, R and R′, in the database
schema that are related by a foreign-key join, its join index,
denoted by IR,R′ , is a set of pairs of row identifiers referring
to a record in each of R and R′ that are related by the
foreign-key join.

Based on the foreign-key join relationships represented
in the schema subgraph G, TALOS computes the join of all
the appropriate join indices for rel(Q′) to derive a relation,
called the hub table, denoted by Jhub. Computing Jhub is
much more efficient than computing J since there are fewer
number of join operations (i.e., number of relevant join in-
dices) and each join attribute is a single integer-valued col-
umn.

Example 6. Consider again query Q4 introduced in Ex-
ample 2. Suppose that we are computing IEQ Q′4 with rel(Q′4)
= {Master, Batting, Team}. Figure 3(b) shows the hub
table, Jhub, produced by joining two join indices: one for
Master ./pID Batting and the other for Batting ./team,year

Team. Here, rM , rB, and rT refer to the row identifiers for
Master, Batting, and Team relations, respectively. 2

Mapping Tables. Instead of computing and operating on
large attribute lists (each with cardinality equal to |J |) as
in the naive approach, TALOS operates over the smaller pre-
computed attribute lists ALi for the base relations in rel(Q′)
together with small mapping tables to link the pre-computed
attribute lists to the hub table. In this way, TALOS only
needs to pre-compute once the attribute lists for all the base
relations, thereby avoiding the overhead of computing many
large attribute lists for different rel(Q′) considered.

Each mapping table, denoted by Mi, is created for each
Ri ∈ rel(Q′) that links each record r in Ri to the set of
records in Jhub that are related to r. Specifically, for each
record r in Ri, there is one record in Mi of the form (j, S),
where j is the row identifier of r, and S is a set of row
identifiers representing the set of records in Jhub that are
created from r.

Example 7. Figure 3(c) shows the mapping table MMaster

that links the Master relation in Figure 1 and Jhub in Fig-
ure 3(b). The record (2, {2, 3}) in MMaster indicates that
the second tuple in Master relation (with pID of P2), con-
tributed two tuples, located in the second and third rows, in
Jhub. 2

Computing Class List. We now explain how TALOS can
efficiently compute the class list CL for J (without having
explicitly computed J) by using the attribute lists, hub ta-
ble, and mapping tables. The key task in computing CL is
to partition the records in J into subsets (J0, P1, P2, etc.), as
described in the previous section. For simplicity and with-
out loss of generality, assume that the schema of Q(D) has
n attributes A1, · · · , An, where each Ai is an attribute of re-
lation Ri. TALOS first initializes CL with one entry for each
record in Jhub with the following default values: nid = 1,
cid = 0, and sid = 0. For each record rk that is accessed
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by a sequential scan of Q(D), TALOS examines the value vi

of each attribute Ai of rk. For each vi, TALOS first retrieves
the set of row identifiers RIvi of records in Ri that have a
value of vi for attribute Ri.Ai by performing a binary search
on the attribute list for Ri.Ai. With this set of row identi-
fiers RIvi , TALOS probes the mapping table Mi to retrieve
the set of row identifiers JIvi of the records in Jhub that are
related to the records referenced by RIvi . The intersection
of the JIvi ’s for all the attribute values of rk, denoted by
Pk, represents the set of records in J that can generate rk.
TALOS updates the entries in CL corresponding to the row
identifiers in Pk as follows: (1) the sid value of each entry
is set to k (i.e., all the entries belong to the same subset
corresponding to record rk); and (2) the cid value of each
entry is set to 1 (i.e., tuple is labeled positive) if |Pk| = 1;
otherwise, it is set to −1 (i.e., it is a free tuple).

Example 8. We illustrate how TALOS creates CL for query
Q4, which is shown in Figure 3(d). Initially, each row in
CL is initialized with sid = 0 and cid = 0. TALOS then ac-
cess each record of Q4(D) sequentially. For the first record
(with name = “B’), TALOS searches ALname and obtains
RIB = {2}. It then probes MMaster with the row identi-
fer in RIB and obtains JIB = {2, 3}. Since Q4(D) con-
tains only one attribute, we have P1 = {2, 3}. The second
and the third rows in CL are then updated with sid = 1
and cid = −1. Similarly, for the second record in Q4(D)
(with name = “E”), TALOS searches ALname and obtains
RIE = {5}, and derives JIE = {6} and P2 = {6}. The
sixth row in CL is then updated with sid = 2 and cid = 1.

2

5. RANKING IEQS
In this section, we describe the ranking criteria we adopt

to prioritize results presented to the user. Specifically, we
consider a metric based on the Minimum Description Length
(MDL) principle [18], and two metrics based on the F-measure
[22].

Minimum Description Length (MDL). The MDL prin-
ciple argues that all else being equal, the best model is
the one that minimizes the sum of the cost of describing
the data given the model and the cost of describing the
model itself. If M is a model that encodes the data D,
then the total cost of the encoding, cost(M, D), is defined
as: cost(M, D) = cost(D|M) + cost(M), where cost(M) is
the cost to encode the model (i.e., the decision tree in our
case) and cost(D|M) is the cost to encode the data given the
model. We can rely on succinct tree-based representations
to compute cost(M). The data encoding cost, cost(D|M),
is calculated as the sum of classification errors. The details
of the encoding computations are given elsewhere [13].

F-measure. We now present two useful metrics based on
the popular F-measure. The first variant follows the stan-
dard definition of F-measure: the F-measure for two IEQs

Q and Q′ is defined as Fm = 2×|pa|
2×|pa|+|pb|+|pc| , where pa =

Q(D)∩Q′(D), pb = Q′(D)−Q(D), and pc = Q(D)−Q′(D).
We denote this variant as F-measure in our experimental
study.

Observe that the first variant is useful only for approx-
imate IEQs, and is not able to distinguish among precise
IEQs as this metric gives identical values for precise IEQs
since pb and pc are empty. To rank precise IEQs, we in-

troduce a second variant, denoted by F est
m , which relies on

estimating pa, pb, and pc using existing data probabilistic
models (as opposed to using the actual values from the data
set). F est

m captures how the equivalence of queries is af-
fected by database updates, and the IEQ with high F est

m is
preferable to another IEQ with low F est

m . For simplicity, we
use a simple independent model [20] to estimate F est

m ; other
techniques such as the Bayesian model by Getoor and oth-
ers [8] can be applied too. The second variant has the benefit
that estimates which are computed from a global distribu-
tion model may more accurately reflect the true relevance of
the IEQs than one computed directly from the data. This of
course pre-supposes that future updates follow the existing
data distribution.

6. EXPERIMENTAL STUDY
In this section, we evaluate the performance of the pro-

posed approaches for computing IEQs and study the rele-
vance of the results returned. The algorithms being com-
pared include our proposed TALOS approach, which is based
on a dynamic assignment of class labels for free tuples, and
two static class labeling techniques: NI labels all the free tu-
ples as positive, and RD labels a random number of at least
one free tuple in each subset as positive. We also examined
the effectiveness of our proposed optimizations by compar-
ing against a non-optimized naive variant of TALOS (denoted
by TALOS-) described in Section 4.1.

The database system used for the experiments is MySQL
Server 5.0.51; and all algorithms are coded using C++ and
compiled and optimized with gcc. Our experiments are con-
ducted on dual core 2.33GHz machine with 3.25GB RAM,
running Linux. The experimental result timings reported
are averaged over 5 runs with caching effects removed.

6.1 Data sets & Queries
We use three real data sets: one small size (Adult), one

medium size (Baseball) and one large data set (TPC-H). All
the test queries are given in Table 2, where sf refers to the
selectivity factor of a query.

Adult. The Adult data set, from the UCI Machine Learn-
ing Repository5, is a single-relation data set that has been
used in many classification works. We use this data set to il-
lustrate the utility of the IEQs for the simple case when both
the input query Q as well as the output IEQ Q′ involve only
one relation. The four test queries for this data set are A1,
A2, A3 and A4

6. The first three queries have different selec-
tivities: low (A1), medium (A2) and very high (A3). Query
A4 is used to illustrate how TALOS handles skyline queries
[4].

In addition, we also run three sets of workload queries with
varying selectivities (low, medium, high) shown in Table 3.
Each workload set Wi consists of five queries denoted by Wi1

to Wi5. The average selectivity factor of the queries in W1,
W2, and W3 are, respectively, 0.85, 0.43, and 0.05.

Baseball. The baseball data set is a more complex, multi-
relation database that contains Batting, Pitching, and Field-
ing statistics for Major League Baseball from 1871 through

5http://archive.ics.uci.edu/ml/datasets/Adult
6We use gain, ms, edu, loss, nc, hpw, and rs, respectively,
as abbreviations for capital-gain, marital-status, education,
capital-loss, native-country, hours-per-week, and relation-
ship.
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Query sf
A1 πnc (σocc=“Armed-Force” adult) 0.91
A2 πedu (σms=“Married-AF”∧race=“Asian” adult) 0.17
A3 πedu,occ (σms=“Never-married”∧64≤age≤68

σrace=“White”∧gain>500∧sex=“F” adult)
0.06

A4 πid (σSKY -LINE(gain MAX,age MIN) adult) 0.06
B1 πname(σteam=“ARI”∧year=2006∧HR>10

(Master ./ Batting))
0.0004

B2 πname(σsum(HR)>600) (Master ./ Batting) 0.001
B3 πname (σSKY -LINE(HR MAX,SO MIN)

(Master ./ Batting))
0.002

B4 πname,year,rank (σteam=“CIN”∧1982<year<1988
(Manager ./ Team))

0.0004

T1 πmfgr(σbrand=“Brand#32”(part)) 0.2
T2 πname(σprice>500,000∧priority=“Urgent”

(customer ./ order))
0.0004

Table 2: Test queries for experiments

Query sf
W11 πms (σ19≤age≤22∧edu=“Bachelors” adult) 0.79
W12 πnc (σocc=“Armed-Force” adult) 0.91
W13 πocc,ms (σnc=“Phillipines”∧30≤age≤40 adult) 0.83
W14 πedu,age (σwc=“Private”∧race=“Asian” adult) 0.82
W15 πocc,edu (σgain>9999 adult) 0.89
W21 πedu (σ23≤age≤24∧nc=“Germany” adult) 0.53
W22 πage,wc,edu (σhpw≤19∧race=“White” adult) 0.64
W23 πedu,age,ms (σwc=“Private”∧race=“Asian” adult) 0.61
W24 πedu,age (σms=“Separated”∧wc=“State-gov”

σrace=“White” adult)
0.2

W25 πedu (σms=“Married-AF”∧race=“Asian” adult) 0.17
W31 πage (σms=“Divorced”∧wc=“State”∧age>70 adult) 0.002
W32 πocc,edu (σms=“NM”∧64≤age≤68∧race=“White”

σgain>2000∧sex=“F” adult)
0.06

W33 πage,wc,edu (σhpw≤19∧race=“White”∧nc=“England”
adult)

0.01

W34 πedu,age,gain (σms=“Married-civ”∧race“Asian”
σ30≤age≤37 adult)

0.17

W35 πedu,gain (σgain>5000∧nc=“Vietnam” adult) 0.0008

Table 3: Workload query sets (W1, W2, W3) for Adult

2006 created by Sean Lahman. There are 16, 639 records of
baseball players, 88, 686 records in Batting, 37, 598 records
in Pitching, 128, 426 records Fielding and other auxiliary
relations (AwardsPlayer, Allstar, Team, Managers, etc.).
The queries used for this data set (B1, B2, B3, B4) are
common queries that mainly relate to baseball players’ per-
formance.

TPC-H. To evaluate the scalability of our approach, we
use the TPC-H data set (with a scaling factor of 1) and two
test queries, T1 and T2.

6.2 Comparing TALOS, NI, and RD
In this section, we compare TALOS against the two static

class-labeling schemes, NI and RD, in terms of their efficiency
as well as the quality of the generated IEQs.

Figures 4(a) and (b) compare the performance of the three
algorithms in terms of the number of weak IEQs generated
and their running times, respectively, using the queries A1

to A4. Note that Figure 4 only compares the performance
for weak IEQs because as the Adult data set is a single-
relation database, all the tuples are necessarily bound when
computing strong IEQs. Thus, the performance results for
strong IEQs are the same for all algorithms and are therefore
omitted. Similarly, the results for query A4 are also omitted
from the graphs because it happens that all the tuples are
bound for query A4; hence, the performance results are again
the same for all three algorithms.

The results in Figures 4(a) and (b) clearly show that TA-

Average height Average size
Query NI RD TALOS NI RD TALOS

A1 14.9 19.8 2.1 5304 9360 4.7
A2 13.4 20.1 3.2 4769 4966 6.9
A3 16.1 21.8 6.5 3224 2970 19.2

Table 4: Comparison of decision trees for NI, RD,
and TALOS

LOS outperforms NI and RD in terms of both the total number
of (precise and approximate) IEQs computed7 as well as the
running time. In particular, observe that the number of pre-
cise IEQs from TALOS is consistently larger than that from
NI and RD. This is due to the flexibility of TALOS’s dynamic
assignment of class labels for free tuples which increase its
opportunities to derive precise IEQs. In contrast, the static
class label assignment schemes of NI and RD are too restric-
tive and are not effective for generating precise IEQs.

In addition, TALOS is also more efficient than NI and RD in
terms of the running time. The reason for this is due to the
flexibility of TALOS’s dynamic labeling scheme for free tuples
which results in decision trees that are smaller than those
constructed by NI and RD. Table 4 compares the decision
trees constructed by TALOS, NI, and RD in terms of their aver-
age height and average size (i.e., number of nodes). Observe
that the decision trees constructed by TALOS are significantly
more compact than that by NI and RD.

Figures 4(c) and (d) compare the quality of the IEQs
generated by the three algorithms using the MDL and F-
measure metrics, respectively. The results show that TALOS

produces much better quality IEQs than both NI and RD:
while the average value of the MDL metric for TALOS is ex-
tremely low (under 60), the corresponding values of both NI

and RD are in the range of [4000, 22000]. For the F-measure
metric, the average value for TALOS is nearly 1 (larger than
0.8), whereas the values for NI and RD are only around 0.3
and 0.4, respectively.

Figure 5 compares the three algorithms for the three sets
of workload queries, W1, W2, and W3, on the Adult data set.
As the results in Figure 5(a) show, TALOS again outperforms
both NI and RD in terms of running time. For both low and
medium selectivity query workload (i.e., W1 and W2), the
results in Figures 5(b) and (c) show TALOS is able to find
many more precise IEQs for all queries compared to NI and
RD. The reason for this is because such queries have a larger
number of free tuples which gives TALOS more flexibility to
derive precise IEQs. Figure 5(d) shows the comparison for
the high selectivity query workload (i.e., W3). As the num-
ber of free tuples is smaller for highly selective queries, the
flexibility for TALOS becomes reduced, but TALOS still obtains
about 1.5 to 9 times larger number of precise IEQs compared
to NI and RD.

Our comparison results for the Baseball data set (not
shown) also demonstrate similar trends with TALOS outper-
forming NI and RD in both the running time as well as the
number and quality of IEQs generated.

7For clarity, we have also indicated in Figure 4(a) the num-
ber of pruned IEQs (defined in Section 4.1) computed by
each algorithm. Since the number of decision trees consid-
ered by all three algorithms are the same, the sum of the
number of precise, approximate, and pruned IEQs gener-
ated by all the algorithms are the same.
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Figure 4: Comparison of TALOS, NI and RD. (a) Number of IEQs (b) Running time (c) MDL metric (d)
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6.3 Effectiveness of Optimizations
Figure 6 examines the effectiveness of the optimizations by

comparing the running times of TALOS and TALOS- on both
the Baseball and TPC-H data sets. Note that the num-
ber and quality of IEQs produced by TALOS and TALOS- are
the same as these qualities are independent of the optimiza-
tions. The results show that TALOS is about 2 times faster
than TALOS-. The reason is that the attribute lists accessed
by TALOS, which correspond to the base relations, are much
smaller than the attribute lists accessed by TALOS-, which
are based one J . For example, for query T1, the attribute
list constructed by TALOS- for attribute “container” in part
relation is 4 times larger than that constructed by TALOS;
and for query T2, the attribute list constructed by TALOS-

for attribute “acctbal” in customer relation is 10 times larger
than that constructed by TALOS. In addition, the computa-
tion of Jhub by TALOS using join indices is also more efficient
than the computation of J by TALOS-.

For the queries B1, B2, and B3 on the Baseball data set,
the number of IEQs (both precise and approximate) gener-
ated by TALOS is in the range [50, 80] with an average running
time of about 80 seconds. Thus, it takes TALOS about 1.2
seconds to generate one IEQ which is reasonable. Note that
the comparison for query B4 is omitted because while TALOS

takes only 37.6 seconds to complete, the running time by
TALOS- exceeds 15 minutes.

For the queries T1 and T2 on the TPC-H data set, TALOS
takes 34.34 seconds to compute six precise IEQs for T1, and
takes 200 seconds to compute one precise and one approxi-
mate IEQs. T2 is more costly to evaluate than T1 because
the decision trees constructed for T2 are larger and more
complex: the average height and size of the decision trees
for T2 are, respectively, 2 and 4 times, larger than those for
T1. Overall, even for the large TPC-H data set, the running
time for TALOS is still reasonable.

6.4 Strong and Weak IEQs
In this section, we discuss some of the IEQs generated

by TALOS for the various queries. The sample of weak and
strong IEQs generated from Adult data set are shown in
Tables 5 and 6, respectively. Tables 7 show sample weak
IEQs generated from Baseball and TPC-H data sets, re-
spectively8. For each IEQ, we also show its value for the
F-measure or F est

m metric; the latter is used only in Table 5
as all the IEQs shown in this table are precise. In Tables 6

8The weak IEQs shown in Table 7 actually turn out to be
strong IEQs as well for the queries B1 to B4.

Q IEQ F est
m

A1,1 σgain>7298∧ms=“Married-AF” (adult) 0.63
A1,2 σedu=“Preschool”∧race=“Eskimo” (adult) 0.25
A1,3 σloss>3770 (adult) 0.24
A2,1 σloss>3683∧edu num>10 (adult) 0.07
A2,2 σage≤24∧nc=“Hungary” (adult) 0.06
A3,1 σp1∨p2 (adult) 0.004

p1 = (age ≤ 85 ∧ hpw ≤ 1 ∧ edu > 13)
p2 = (age > 85∧edu = “Master”∧hpw ≤ 40)

Table 5: Weak IEQs on Adult

and 7, the F-measure metric values are shown in terms of
their |pa|, |pb| and |pc| values; a IEQ is precise iff |pb| = 0
and |pc| = 0. We use Xi,j to denote an IEQ for a query Xi,
X ∈ {A, B, T}.
Adult. In query A1, we want to know the native country of
people whose occupation is in the Armed Force. The query
result is“U.S”. From the weak IEQs, we learn that the people
who is married to some one in the Armed Force and have
high capital gain (A1,1) have the same native country “U.S”;
or people with high capital loss (> 3770) also have “U.S” as
their native country (A1,3).

In query A2, we want to know the education level of
Asians who have a spouse working in the Air Force. The
result shows that they all have bachelor degrees. From
the weak IEQs, we know that Hungarians who are younger
than 25 also have the same education level (A2,2). For the
strong IEQs, we have some interesting characterizations:
A2,3 shows that these Asians are from Philippines, while
A2,4 shows that these Asians are wives whose age are at
most 30 and work more than 52 hours per week. Such alter-
native queries provide more insights about query A2 on the
Adult data set.

In query A3, we want to find the occupation and educa-
tion of white females who are never married with age in the
range [64, 68], and have capital gain > 500. The query result
has 5 records. The strong IEQ A3,2 provides more insights
about this group of people: those in the age range [64, 66]
are highly educated, whereas the others in the age range
[67, 68] have high capital gains.

Query A4 is a skyline query looking for people with maxi-
mal capital gain and minimal age. The query result includes
four people. Both strong and weak IEQs return the same
IEQs for this query. Interestingly, the precise IEQ A4,1 pro-
vides a simplification of A4: the people selected by this sky-
line query are (1) very young (age ≤ 17) and have capital
gain in the range 1055−27828, or (2) have very high capital
gain (> 27828), work in the protective service, and whose
race is classified as “others”.

Baseball. In query B1, we want to find all players who
belong to team “ARI” in 2006 and have a high performance
(HR > 10). The result includes 7 players. From the IEQ
B1,1, we know more information about these players’ perfor-
mance (G, RBI, etc.), and their personal information (e.g.,
birth year). In addition, from IEQ B1,2, we also know that
one player in this group got an award when he played in
“NL” league.

In query B2, we want to find the set of high performance
players who have very high total home runs (> 600). There
are four players with these characteristics. The IEQ B2,1

indicates that some of these players play for “ATL”or“NY1”
team. The IEQ B2,2 indicates one player in this group is
highly paid and has a left throwing hand.
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Q IEQ |pa| |pb| |pc|
A1,4 σp1 (adult) 1 1 13

p1 = (48 < hpw ≤ 50 ∧ race 6=
“Eskimo”,“Asian” ∧ 6849 < gain ≤ 7298 ∧
loss ≤ 0 ∧ edu num > 14)

A2,3 σms=“Married-AF”∧nc=“Philippines” (adult) 1 0 0
A2,4 σrace=“Asian”∧rs=“Wife”∧hpw>52∧age≤30

(adult)
1 0 0

A3,2 σp1∨p2 (adult) 5 0 0
p1 = (63 < age ≤ 66 ∧ edu > 15 ∧ ms =
“NM”)
p2 = (66 < age ≤ 68 ∧ms = “NM”∧ gain >
2993)

A4,1 σp1∨p2 (adult) 4 0 0
p1 = (1055 < gain ≤ 27828 ∧ age ≤ 17)
p2 = (gain > 27828 ∧ occ = P ∧ race 6= O)

Table 6: Strong IEQs on Adult

Q IEQ |pa| |pb| |pc|
B1,1 σp1∨p2 (Master ./ Batting) 7 0 0

p1 = (team = “ARI” ∧ G ≤ 156 ∧ 70 <
RBI ≤ 79 ∧ year > 1975)
p2 = (team = “ARI”∧G > 156 ∧ BB ≤ 78)

B1,2 σlg=“NL”∧year=12∧71<height≤72∧nc 6=“D.R”
(Master ./ AwardsP layer)

1 0 6

B2,1 σp1∨p2 (Master ./ Batting) 4 0 0
p1 = (BB ≤ 162 ∧ HR > 46 ∧ team ∈
{“ATL”, “NY1”} ∧ RBI ≤ 127)
p2 = (BB > 162)

B2,2 σsalary>21680700∧throws=“L” (Master ./
Salaries)

1 0 3

B3,1 σ(team=“WS2”∧R≤4)∨(team=“NYA”∧state=“LA”)
(Master ./ Manager)

2 0 33

B3,2 σp1∨p2) (Master ./ Salaries) 2 0 33
p1 = (height ≤ 78 ∧ weight > 229 ∧
country = “DR” ∧ 180000 < salary <
195000)
p2 = (height > 78∧state = “GA”∧salary <
302500)

B4,1 σ21<L≤22∧SB≤0∧67<W≤70 (Mananger ./
Master ./ Batting ./ Team)

1 0 5

T1,1 σprice>2096.99∧331<avaiqty≤1527 (part) 1 0 0
T1,2 σavaiqty≤1∧container=“SM bag” (part ./

part supp)
1 0 0

Table 7: Weak IEQs on Baseball and TPCH

Query B3 is a skyline query that looks for players with
maximal number of home runs (HR) and minimal number
of strike outs (SO). The result has 35 players. The IEQs pro-
vide different characterizations of these players. Query B3,1

indicates that two players in this group are also the man-
agers of“WS2”and“NYA”teams; while query B3,2 indicates
that two players in this group are averagely paid.

Query B4 is an interesting query that involves multiple
core relations. This query asks for the managers of team
“CIN” from 1983 to 1988, the year they managed the team
as well as the rank that the team gained. There are 3 man-
agers in the result. In this query, we note that TALOS found
alternative join-paths to link the two core relations, Man-
ager and Team. The first alternative join-path (shown by
B4,1) involves Manager, Master, Batting, and Team. The
second alternative join-path (not shown) involves Manager,
Master, Fielding, and Team. The IEQ B4,1 reveals the in-
teresting observation that there is one manger who is also
a player in the same year that he managed the team with
some additional information about this manager-player.

TPC-H. Query T1 retrieves the manufacturers who supply
products of brand“brand#32”. The result includes one man-
ufacturer “Manufacturer#1”. The IEQ T1,1 indicates that

this manufacturer also supplies some parts at a high price,
where their available quantity is in the range [332, 1527].
The IEQ T1,2 indicates that this manufacturer also supplies
others products in the container named “SM bag” with an
available quantity of at most one.

7. RELATED WORK
Although the title of our paper is inspired by Zloof’s in-

fluential work on Query by Example (QBE) [25], the problem
addressed by QBE, which is on providing a more intuitive
form-based interface for database querying, is completely
different from QBO.

There are several recent work [2, 3, 5, 14] that share the
same broad principle of “reverse query processing” as QBO

but differ totally in the problem objectives and techniques.
Binnig et al. [2, 3] addressed the problem of generating test
databases: given a query Q and a desired result R, generate
a database D such that Q(D) = R. Bruno et al. [5] and
Mishra et al. [14] examined the problem of generating test
queries to meet certain cardinality constraints: given a query
Q, a database D, and a set of target cardinality constraints
on intermediate subexpression in Q’s evaluation plan, mod-
ify Q to generate a new query Q′ such that the evaluation
plan of Q′ on D satisfies the cardinality constraints.

An area that is related and complementary to QBO is in-
tensional query answering (IQA) or cooperative answering,
where for a given Q, the goal of IQA is to augment the
query’s answer Q(D) with additional “intensional” informa-
tion in the form of a semantically equivalent query9 that
is derived from the database integrity constraints [7, 15].
While semantic equivalence is stronger than instance equiv-
alence and can be computed in a data-independent manner
using only integrity constraints (ICs), there are several ad-
vantages of adopting instance equivalence for QBO. First, in
practice, many data semantics are not explicitly captured
using ICs in the database for various reasons [9]; hence,
the effectiveness of IQA could be limited for QBO. Second,
even when the ICs in the database are complete, it can be
very difficult to derive semantically equivalent queries for
complex queries (e.g., skyline queries that select dominant
objects). By being data-specific, IEQs can often provide in-
sightful and surprising characterizations of the input query
and its result. Third, as IQA requires the input query Q to
be known, IQA therefore cannot be applied to QBO applica-
tions where only Q(D) (but not Q) is available. Thus, we
view IQA and our proposed data-driven approach to com-
pute IEQs as complementary techniques for QBO.

More recently, an interesting direction of using Précis queries
[12, 19] has been proposed. The idea is to augment a user’s
query result with other related information (e.g., relevant
tuples from other relations) and also allow the results to
be personalized based on user-specified or domain require-
ments. The objectives of this work is orthogonal to QBO; and
as in IQA, it is a query-driven approach that requires the
input query to be known.

In the data mining literature, a somewhat related problem
to ours is the problem of redescription mining introduced by
Ramakrishnan [17]. The goal in redescription mining is to
find different subsets of data that afford multiple descrip-
tions across multiple vocabularies covering the same data

9Two queries Q and Q′ are semantically equivalent if for
every valid database D, Q(D) ≡ Q′(D).
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set. At an abstract level, our work is different from these
methods in several ways. First, we are concerned with a
fixed subset of the data (the output of the query). Second,
none of the approaches for redescription mining account for
structural (relational) information in the data (something
we explicitly address). Third, redescription mining as it was
originally posited requires multiple independent vocabulary
descriptions to be identified. We do not have this require-
ment as we are simply interested in alternative query for-
mulations within an SQL context. Finally, the notion of
“at-least-one” semantics described in our work is something
redescription mining is not concerned with as it is an artifact
of the SQL context of our work.

8. CONCLUSION
In this work, we have introduced a new data-driven ap-

proach called query by output (QBO) targeted at improving
the usability of database management systems. The goal of
QBO is to discover instance-equivalent queries. Such queries
can shed light on hidden relationships within the data, pro-
vide useful information on the relational schema as well as
potentially summarize the original query.

We have developed an efficient system called TALOS for
QBO, and our experimental results on several real database
workloads of varying complexity highlight the benefits of our
approach.

Although our discussions focus primarily on QBO where
Q is known (to identify core relations), extending to the
case without Q is feasible too: it requires an additional pre-
processing phase to map each column of Q(D) to a set of
relation attributes by comparing the column contents. In
addition, our approach also could be adapted to handle du-
plicates in Q(D) by using the at-least-k semantics instead
of at-least-one semantics.

As part of our future work, we plan to explore a hybrid
approach that includes an off-line phase to mine for soft
constraints in the database and an online phase that exploits
both the database contents as well as mined constraints.
Another interesting direction to be explored is to increase
the expressiveness of IEQs (e.g., SPJ + union queries).
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