
Human-powered Sorts and Joins

Adam Marcus Eugene Wu David Karger Samuel Madden Robert Miller
{marcua,sirrice,karger,madden,rcm}@csail.mit.edu

ABSTRACT
Crowdsourcing marketplaces like Amazon’s Mechanical Turk (MTurk)
make it possible to task people with small jobs, such as labeling im-
ages or looking up phone numbers, via a programmatic interface.
MTurk tasks for processing datasets with humans are currently de-
signed with significant reimplementation of common workflows and
ad-hoc selection of parameters such as price to pay per task. We de-
scribe how we have integrated crowds into a declarative workflow
engine called Qurk to reduce the burden on workflow designers. In
this paper, we focus on how to use humans to compare items for sort-
ing and joining data, two of the most common operations in DBMSs.
We describe our basic query interface and the user interface of the
tasks we post to MTurk. We also propose a number of optimiza-
tions, including task batching, replacing pairwise comparisons with
numerical ratings, and pre-filtering tables before joining them, which
dramatically reduce the overall cost of running sorts and joins on the
crowd. In an experiment joining two sets of images, we reduce the
overall cost from $67 in a naive implementation to about $3, without
substantially affecting accuracy or latency. In an end-to-end experi-
ment, we reduced cost by a factor of 14.5.

1. INTRODUCTION
Crowd-sourced marketplaces, like Amazon’s Mechanical Turk (MTurk),

make it possible to recruit large numbers of people to complete small
tasks that are difficult for computers to do, such as transcribing an au-
dio snippet or finding a person’s phone number on the Internet. Em-
ployers submit jobs (Human Intelligence Tasks, or HITs in MTurk
parlance) as HTML forms requesting some information or input from
workers. Workers (called Turkers on MTurk) perform the tasks, in-
put their answers, and receive a small payment (specified by the em-
ployer) in return (typically 1–5 cents).

These marketplaces are increasingly widely used. Crowdflower, a
startup company that builds tools to help companies use MTurk and
other crowdsourcing platforms now claims to more than 1 million
tasks per day to more than 1 million workers and has raised $17M+ in
venture capital. CastingWords, a transcription service, uses MTurk to
automate audio transcription tasks. Novel academic projects include
a word processor with crowdsourced editors [1] and a mobile phone
application that enables crowd workers to identify items in images
taken by blind users [2].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 38th International Conference on Very Large Data Bases,
August 27th - 31st 2012, Istanbul, Turkey.
Proceedings of the VLDB Endowment, Vol. 5, No. 0
Copyright 2011 VLDB Endowment 2150-8097/11/07... $ 10.00.

There are several reasons that systems like MTurk are of interest
database researchers. First, MTurk workflow developers often imple-
ment tasks that involve familiar database operations such as filtering,
sorting, and joining datasets. For example, it is common for MTurk
workflows to filter datasets to find images or audio on a specific sub-
ject, or rank such data based on workers’ subjective opinion. Pro-
grammers currently waste considerable effort re-implementing these
operations because reusable implementations do not exist. Further-
more, existing database implementations of these operators cannot
be reused, because they are not designed to execute and optimize
over crowd workers.

A second opportunity for database researchers is in query opti-
mization. Human workers periodically introduce mistakes, require
compensation or incentives for work, and take longer than traditional
silicon-based operators. Currently, workflow designers perform ad-
hoc parameter tuning when deciding how many assignments of each
HIT to post in order to increase answer confidence, how much to pay
for each task, and how to combine several human-powered operators
(e.g., multiple filters) together into a single HIT. These parameters
are amenable to cost-based optimization, and introduce an exciting
new landscape for query optimization and execution research.

To address these opportunities, we have built Qurk [11], a declar-
ative query processing system designed to run queries over a crowd
of workers, with crowd-based filter, join, and sort operators that op-
timize for some of the parameters described above. Qurk’s executor
can choose the best implementation or user interface for different op-
erators depending on the type of question or properties of the data.
The executor combines human computation and traditional relational
processing (e.g., filtering images by date before presenting them to
the crowd). Qurk’s declarative interface enables platform indepen-
dence with respect to the crowd providing work. Finally, Qurk au-
tomatically translates queries into HITs and collects the answers in
tabular form as they are completed by workers.

Several other groups, including Berkeley [5] and Stanford [13]
have also proposed crowd-oriented database systems motivated by
the advantages of a declarative approach. These initial proposals, in-
cluding our own [11], presented basic system architectures and data
models, and described some of the challenges of building such a
crowd-sourced database. The proposals, however, did not explore the
variety of possible implementations of relational operators as tasks
on a crowd such as MTurk.

In this paper, we focus on the implementation of two of the most
important database operators, joins and sorts, in Qurk. We believe we
are the first to systematically study the implementation of these op-
erators in a crowdsourced database. The human-powered versions of
these operators are important because they appear everywhere. For
example, information integration and deduplication can be stated as
a join between two datasets, one with canonical identifiers for enti-
ties, and the other with alternate identifiers. Human-powered sorts
are widespread as well. Each time a user provides a rating, product

review, or votes on a user-generated content website, they are con-
tributing to a human-powered ORDER BY.

Sorts and joins are challenging to implement because there are a
variety of ways they can be implemented as HITs. For example, to
order a list of images, we might ask users to compare groups of im-
ages. Alternatively, we might ask users for numerical ratings for each
image. We would then use the comparisons or scores to compute the
order. The interfaces for sorting are quite different, require a differ-
ent number of total HITs and result in different answers. Similarly,
we explore a variety of ways to issue HITs that compare objects for
computing a join, and study answer quality generated by different
interfaces on a range of datasets.

Besides describing these implementation alternatives, we also ex-
plore optimizations to compute a result in a smaller number of HITs,
which reduces query cost and sometimes latency. Specifically, we
look at:

• Batching: We can issue HITs that ask users to process a vari-
able number of records. Larger batches reduce the number of
HITs, but may negatively impact answer quality or latency.

• Worker agreement: Workers make mistakes, disagree, and at-
tempt to game the marketplace by doing a minimal amount
of work. We evaluate several metrics to compute answer and
worker quality, and inter-worker agreement.

• Join pre-filtering: There are often preconditions that must be
true before two items can be joined. For example, two people
are different if they have different genders. We introduce a way
for users to specify such filters, which require a linear pass by
the crowd over each table being joined, but allow us to avoid a
full cross-product when computing the join.

• Hybrid sort: When sorting, asking users to rate items requires
fewer tasks than directly comparing pairs of objects, but pro-
duces a less thorough ordering. We introduce a hybrid algo-
rithm that uses rating to roughly order items, and iteratively
improves that ordering by using comparisons to improve the
order of objects with similar ratings.

Our join optimizations result in more than an order-of-magnitude
(from $67 to $3 on a join of photos) cost reduction while maintaining
result accuracy and latency. For sorts, we show that ranking (which
requires a number of HITs linear in the input size) costs dramatically
less than ordering (which requires a number of HITs quadratic in the
input size), and produces comparable results in many cases. Finally,
in an end-to-end test, we show that our optimizations can reduce by
a factor of 14 the number of HITs required to join images of actors
and rank-order them.

In addition to describing these specific operators and optimiza-
tions, we review the design of Qurk (originally described in our
CIDR paper [11]) and present several extensions to our basic system
model that we have developed as we implemented the system.

2. LANGUAGE OVERVIEW AND SYSTEM
In this section, we describe the query language and implementa-

tion of Qurk. An initial version of this design appeared in a short
paper [11], though the design has since been refined.

2.1 Data Model and Query Language
This section describes the Qurk data model and query language,

and focuses on how joins and sorts are expressed through a series
of queries. Our examples have workers provide us with information
about various images. We use image examples for consistency of ex-
planation, and because databases typically do not perform processing
over images. Qurk’s use cases are not limited to processing images.
Franklin et al. [5] show how human computation-aware joins can be
used for entity disambiguation, and we explore using workers to rate
a video in Section 5.

The basic data model is relational, with user-defined scalar and
table functions (UDFs) used to retrieve data from the crowd. Rather
than requiring users to implement these UDFs in terms of raw HTML
forms or low-level declarative code, most UDFs are implemented us-
ing one of several pre-defined Task templates that specify informa-
tion about how Qurk should present questions to the crowd.

To illustrate a simple example, suppose we have a table of celebri-
ties, with schema celeb(name text, img url).

We want the crowd to filter this table and find celebrities that are
female. We would write:

SELECT c.name
FROM celeb AS c
WHERE isFemale(c)

With isFemale defined as follows:

TASK isFemale(field) TYPE Filter:
Prompt: "<table><tr> \

<td></td> \
<td>Is the person in the image a woman?</td> \

</tr></table>", tuple[field]
YesText: "Yes"
NoText: "No"
Combiner: MajorityVote

Tasks have types, which define the low-level implementation and
interface that is generated. For the case of a Filter task, it takes tuples
as input, and produces tuples that users indicate satisfy the question
specified in the Prompt field. Here, Prompt is simply an HTML
block into which the programmer can substitute fields from the tuple
being filtered. This tuple is available via the tuple variable; its
fields are accessed via the use of field names in square brackets ([]).
In this case, the question shows an image of the celebrity and asks
if the person is female. The YesText and NoText fields are used
to allow developers to specify the titles of buttons for the answers to
questions.

Since workers make mistakes, generate unusual answers, or at-
tempt to game the system by performing tasks without thinking to
get paid quickly, it is often valuable to ask multiple workers for an-
swers. We allow users to specify how many responses are desired.
By default we send jobs to 5 workers. Users can specify if they want
more workers to answer, and in our experiments we measure the ef-
fect of this value on answer quality. We also explore algorithms for
adaptively deciding whether another answer is needed in Section 6.

The Combiner field specifies a function that is used to specify
how to combine multiple responses into a single answer. In addi-
tion to providing a MajorityVote combiner, which returns the
most popular answer, we have implemented the method described by
Ipeirotis et al. [6]. This method, which we call QualityAdjust,
identifies spammers and worker bias, and iteratively adjusts answer
confidence accordingly in an Expectation Maximization-like fashion.

Filters describe how to ask a worker about one tuple. The query
compiler and optimizer can choose to repeat the Prompts for several
batched tuples at one time. This allows workers to perform several
filter operations on records from the same table in a single HIT.

Advanced users of Qurk can define their own tasks that, for exam-
ple, generate specialized UIs. However, these custom UIs require ad-
ditional effort if one wishes to take advantage of optimizations such
as batching.

2.2 Generative Tasks
Filter tasks have a constrained user interface for providing a re-

sponse. Often, a task requires workers to generate unconstrained
input, such as producing a label for an image or finding a phone
number. In these situations, we must normalize worker responses to
better take advantage of multiple worker responses. Since generative

tasks can have workers generate data for multiple fields and return
tuples, this is a way to generate tables of data.

For example, say we have a table of animal photos:
animals(id integer, img url)
and we wish to ask workers to provide us with the common name

and species of each animal:

SELECT id, animalInfo(img).common,
animalInfo(img).species

FROM animals AS a

In this case, animalInfo is a generative UDF which returns
two fields, common with the common name, and species with the
species name.

TASK animalInfo(field) TYPE Generative:
Prompt: "<table><tr> \

<td> \
<td>What is the common name \

and species of this animal? \
</table>", tuple[field]

Fields: {
common: { Response: Text("Common name")

Combiner: MajorityVote,
Normalizer: LowercaseSingleSpace },

species: { Response: Text("Species"),
Combiner: MajorityVote,
Normalizer: LowercaseSingleSpace }

}

A generative task provides a Prompt for asking a question, much
like a filter task. It can return a tuple with fields specified in the
Fields parameter. Just like the filter task, we can combine the
work with a Combiner. We also introduce a Normalizer, which
takes the text input from workers and normalizes it by lower-casing
and single-spacing it, which makes the combiner more effective at
aggregating responses.

2.3 Sorts
Sorts are implemented through UDFs specified in the ORDER

BY clause. Suppose, for example, we have a table of images of
squares of different sizes, with schema squares(label text,
img url).

To order these by the area of the square, we write:

SELECT squares.label
FROM squares
ORDER BY squareSorter(img)

where the task definition for squareSorter is as follows.

TASK squareSorter(field) TYPE Rank:
SingularName: "square"
PluralName: "squares"
OrderDimensionName: "area"
LeastName: "smallest"
MostName: "largest"
Html: "",tuple[field]

As we discuss in Section 4, Qurk uses one of several different in-
terfaces for ordering elements. One version asks users to order small
subsets of elements; the other version asks users to provide a numer-
ical ranking for each element. The Rank task asks the developer to
specify a set of labels that are used to populate these different inter-
faces. In the case of comparing several squares, the above text will
generate an interface like the one shown in Figure 5.

As with filters, tasks like Rank specified in the ORDER BY clause
can ask users to provide ordering information about several records
from the input relation in a single HIT. This is allows our interface to
batch together several tuples for a worker to process.

This Rank UDF can also be used to implement top-K (via a LIMIT
clause) and MAX/MIN aggregates. For top-K, we simply perform a
complete sort and extract the top-K items. For MAX/MIN, we use
an interface that extracts the best element from a batch at a time.

2.4 Joins and Feature Extraction
The basic implementation of joins is quite similar to that for sorts

and filters. For example, suppose we want to join table of images
with schema photos(img url) with the celebrities table defined
above:

SELECT c.name
FROM celeb c JOIN photos p
ON samePerson(c.img,p.img)

The samePerson predicate is an equijoin task, as follows:

TASK samePerson(f1, f2) TYPE EquiJoin:
SingluarName: "celebrity"
PluralName: "celebrities"
LeftPreview: "",tuple1[f1]
LeftNormal: "",tuple1[f1]
RightPreview: "",tuple2[f2]
RightNormal: "",tuple2[f2]
Combiner: MajorityVote

The fields in this task are used to generate one of several different
join interfaces that is presented to the user. The basic idea with these
interfaces is to ask users to compare pairs of elements from the two
tables (accessed through the tuple1 and tuple2 variables); these
pairs are used to generate join results. As with sorting and filter, Qurk
can automatically batch together several join tasks into one HIT. A
sample interface is shown in Figure 2a.

Feature Extraction: As we discuss in Section 3.2, we often wish
to extract features of items being joined together to filter potential
join candidates down, and allow us to avoid computing a cross prod-
uct. Some features may not be useful for accurately trimming the
cross product, and so we introduce a syntax for users to suggest fea-
tures for filtering that may or may not be used (as we discuss in Sec-
tion 3.2, the system automatically selects which features to apply.)

We supplement traditional join syntax with a POSSIBLY keyword
that indicates the features that may help filter the join. For example,
the query:

SELECT c.name
FROM celeb c JOIN photos p
ON samePerson(c.img,p.img)
AND POSSIBLY gender(c.img) = gender(p.img)
AND POSSIBLY hairColor(c.img) = hairColor(p.img)
AND POSSIBLY skinColor(c.img) = skinColor(p.img)

joins the celeb and photos table as above. The additional
POSSIBLY clause filters extract gender, hair color, and skin color
from images being joined and are used to reduce the number of join
candidates that the join considers. Specifically, the system only asks
users to join elements from the two tables if all of the predicates in
the POSSIBLY clause it tries are satisfied (it may not try all predi-
cates.) These predicates can be applied in a linear scan of the tables,
avoiding a cross product that might otherwise result. Here, gender,
hairColor, and skinColor are UDFs that return one of sev-
eral possible values (rather than table functions as with the previous
UDFs.) For example:

TASK gender(field) TYPE Generative:
Prompt: "<table><tr> \

<td> \
<td>What this person’s gender? \

</table>", tuple[field]
Response: Radio("Gender",

["Male","Female",UNKNOWN])
Combiner: MajorityVote

!"#$%&&

'()*+*,+&!)-)./$& 0#/$1&23*456/$&

78/,#(9$&

:;&

<
;=

>?"&@9435A/$&

")+%&!9B/A&

")+%&
!)-)./$&

")+%C&
")+%D&
")+%E&

')F/B&G/+#A(+&

)H&
)I&
5-=& 5-;&

JH&

@9
4
35
A/
B&

>?
"+
&

>?"&$/+#A(+&

")+%&@),K/&

?-(/$-)A&&
>?"& ")+%+&

G/+#A(+& G/+#A(+&

L+/$&

0#/$5/+&G/+#A(+&

?-3#(&:)()&

1: The Qurk system architecture.

In contrast to the animalInfo generative task, note that this
generative task only has one field, so it omits the Fields parame-
ter. Additionally, the field does not require a Normalizer because
it has a constrained input space.

It is possible for feature extraction interfaces to generate a special
value UNKNOWN, which indicates a worker could not tell its value.
This special value is equal to any other value, so that an UNKNOWN
value does not remove potential join candidates.

2.5 HIT Generation
The above queries need to be translated into HITs that are issued

to the underlying crowd. It’s important to generate tasks in a way that
keeps the total number of HITs generated down. For example, as in
a traditional database, it’s better to filter tables before joining them.
Query planning in Qurk is done in a way similar to conventional log-
ical to physical query plan generation; a query is translated into a
plan-tree that processes input tables in a bottom-up fashion. Rela-
tional operations that can be performed by a computer rather than
humans are pushed down the query plan as far as possible (including
pushing non-HIT joins below HIT-based filters when possible.)

The system generates HITs for all non-join WHERE clause ex-
pressions first, and then as those expressions produce results, feeds
them into join operators, which in turn produce HITs that are fed to
successive operators. As with traditional query execution, HITs for
conjuncts (ANDs) of filters are issued serially, while disjuncts (ORs)
are issued in parallel. After filters, joins are executed left-deep, with
results of lower joins being pipelined into higher joins. Qurk cur-
rently lacks selectivity estimation, so it orders filters and joins as
they appear in the query.

2.6 Architecture and Implementation
In this section, we briefly describe the architecture of Qurk and

provide a few details about its implementation.
The basic architecture is shown in Figure 1. Queries are issued

through the Query Optimizer, which generates a logical plan and be-
gins executing it in the Executor. The executor runs the plan, gener-
ating tasks according to the rules in Section 2.5. These tasks are sent
to the Task Manager, which applies batching and other optimizations
and dispatches them to the Task Cache/Model/HIT Compiler, which
first checks to see if the HIT is cached and if not generates HTML for
the HIT and dispatches it to the crowd. As answers come back, they
are cached, extracted from their HTML forms, and fed to the execu-
tor, which sends the results to the operators that operate on them (or
to the user). These operators in turn generate more tasks.

In our implementation, each operator runs in its own thread, asyn-
chronously consumes results from input queues, and autonomously

sends tasks to the Task Manager. Qurk is implemented as a Scala
workflow engine with several types of input including relational databases
and tab-delimited text files. We created several interface prototypes
and experiments in Python using the Django web framework.

Pricing Tasks: Our current Qurk implementation runs on top of
Mechanical Turk. We pay a fixed value per HIT ($0.01 in our exper-
iments). Research by Mason and Watts has suggested that workers
on Mechanical Turk do not do particularly higher quality work for
higher priced tasks [12]. Mason and Watts also find that workers in-
crease the amount of work they perform with an increase in wage,
suggesting that Turkers have an internal model of how much money
their work is worth. In all of our experiments, the basic tasks we per-
form are quick enough that users will do several of them for $0.01,
which means we can batch together several tasks into a single HIT.
Paying more per HIT would allow us to perform more batching, but
the degree of additional batching would scale linearly with the addi-
tional money we pay, which wouldn’t save us money.

Objective Function: Because we pay a fixed value per HIT, our
system currently uses a simple objective function: minimize the to-
tal number of HITs required to fully process a query subject to the
constraint that query answers are actually produced1. The constraint
arises because certain optimizations we apply, like batching, will
eventually lead to HITs that are too time-consuming for users to be
willing to do for $0.01.

Batching: Our system automatically applies two types of batching
to tasks: merging, where we generate a single HIT that applies a
given task (operator) to multiple tuples, and combining, where we
generate a single HIT that applies several tasks (generally only filters
and generative tasks) to the same tuple. Both of these optimizations
have the effect of reducing the total number of HITs2. We discuss
our approach to batching sorts and joins in more detail in the next
two sections; for filters and generative tasks, batches are generated
by concatenating the HTML forms for multiple tasks together onto
the single web page presented to the user.

HIT Groups: In addition to batching several tasks into a sin-
gle HIT, our system groups together (batched) HITs from the same
operator into groups that are sent to Mechanical Turk as a single
HIT group. This is done because Turkers tend to gravitate toward
HIT groups with more tasks available in them, as they can more
quickly perform work once they are familiar with the interface. In
CrowdDB [5], the authors show the effect of HIT group size on task
completion rate.

Now that we’ve presented our general architecture, we describe the
specific implementations and optimizations we developed for joins
and sorts.

3. JOIN OPERATOR
This section describes several implementations of the join opera-

tor, and the details of our feature filtering approach for reducing join
complexity. We present a series of experiments to show the quality
and performance of different join approaches.

3.1 Implementation

1Other possible objective functions include maximizing answer
quality or minimizing answer latency. Unfortunately, answer quality
is hard to define (especially since the correct answer to many human
computation tasks cannot be known), and latency is highly variable,
and probably better optimized through low-level optimizations like
those used in quikTurkit [2].
2For sequences of conjunctive predicates, combining actually does
more “work” on people than not combining, since tuples that may
have been discarded by the first filter are run through the second filter
as well. Still, as long as the first filter does not have 0 selectivity, this
will reduce the total number of HITs that have to be run.

The join HIT interface asks a worker to compare elements from
two joined relations. Qurk implements a block nested loop join, and
uses the results of the HIT comparisons to evaluate whether two ele-
ments satisfy the join condition. We do not implement more efficient
join algorithms (e.g., hash join or sort-merge join) because we do not
have a way to compute item (e.g., picture) hashes for hash joins or
item order for sort-merge joins.

The following screenshots and descriptions center around evalu-
ating join predicates on images, but are not limited to image data
types. The implementations generalize to any field type that can be
displayed in HTML. In this section, we assume the two tables being
joined are R and S, with cardinalities |R| and |S|, respectively.

3.1.1 Simple Join
Figure 2a shows an example of a simple join predicate interface

called SimpleJoin. In this interface, a single pair of items to be joined
is displayed in each HIT along with the join predicate question, and
two buttons (Yes, No) for whether the predicate evaluates to true or
false. This simplest form of a join between tables R and S requires
|R||S| HITs to be evaluated.

3.1.2 Naive Batching
Figure 2b shows the simplest form of join batching, called Naive-

Batch. In NaiveBatch, we display several pairs vertically. Yes, No
radio buttons are shown with each pair that is displayed. A Submit
button at the bottom of the interface allows the worker to submit all
of the pairs evaluated in the HIT. If the worker clicks Submit with-
out having selected one of Yes or No for each pair, they are asked to
select an option for each unselected pair.

For a batch size of b, where b pairs are displayed in each HIT, we
can reduce the number of HITs to |R||S|

b
.

3.1.3 Smart Batching
Figure 2c shows a more complex join batching interface called

SmartBatch. Two columns of images are displayed, and workers are
asked to click on pairs of images that match the join predicate. The
first column contains images from table R and the second contains
images from table S.

Once a worker selects a pair, it is displayed in a list to the right of
the columns, and can be removed (if added by mistake) by clicking
on the pair. All selected pairs are connected by a line. If none of
the images match the join predicate, the worker is asked to click a
checkbox indicating no matches. In order to submit the HIT, the box
must be checked or at least one pair must be selected.

To conserve vertical space, images are not displayed at full size.
If a user hovers over an image, it is displayed at the size used in
SimpleJoin and NaiveJoin (e.g., in Figure 2c, the mouse is hovering
over Notorious B.I.G, who is displayed at full size).

For r images in the first column and s in the second column, we
must evaluate |R||S|

rs
HITs.

3.1.4 Alternative Join Algorithms
There are a number of alternative join algorithms that we do not

consider in this paper. For example, we could first generate HITs that
ask workers to label each tuple with a unique identifier of the entity
that it represents, then perform a traditional join on the identifier.
The focus of this paper is understanding the accuracy-cost tradeoffs
of batching and combining, so these alternatives are outside the scope
of this paper. However, we note that our results can be used to benefit
other join algorithms, and we use the idea of labeling tuples for our
feature filtering optimization described in Section 3.2.

3.2 Feature Filtering Optimization
In Section 2.1, we introduced the POSSIBLY clause to joins for

identifying feature-based filters that may reduce the size of a join

cross product. This clause allows the developer to specify that some
features must be true for the join predicate to evaluate to true. For
example, two profile images shouldn’t join unless they have the same
gender, hair color, and skin color. These predicates allow us to only
consider join pairs which match the extracted features.

We now explain the benefit of this filtering. To simplify our anal-
ysis, we assume that all filter features are uncorrelated, and that the
filters do not emit the value UNKNOWN.

Suppose there are N POSSIBLY clauses added to a join. Let
F = {F1, ..., FN}, where Fi is a set that contains the possible values
for the feature being compared in POSSIBLY clause i. For example,
if the ith feature is hairColor, Fi = {black, brown, blond, white}.
Let the probability that feature i (e.g., hair color) has value j (e.g.,
brown) in table X to be ρXij . Then, for two tables, R and S, the
probability that those two tables match on feature i is:

σi =
X
j∈Fi

ρSij × ρRij

In other words, σi is the selectivity of feature i. Thus, the selectivity
of all expressions in the POSSIBLY clause (assuming the features
are independent) is:

Sel =
Y

i∈[1...N]

σi

Feature filtering causes the total number of join HITs that are exe-
cuted to be a fraction Sel of what would be executed by a join al-
gorithm alone. This benefit comes at the cost of running one linear
pass over each table for each feature filter. Of course, the HITs in the
linear pass can be batched through merging and combining.

In general, feature filtering is helpful, but there are three possible
cases where we may not want to apply a filter: 1) if the additional
cost of applying the filter does not justify the reduction in selectivity
it offers (e.g., if all of the people in two join tables of images have
brown hair); 2) if the feature doesn’t actually guarantee that two en-
tities will not join (e.g., because a person has different hair color in
two different images); or 3) if the feature is ambiguous (i.e., workers
do not agree on its value).

To detect 1), we run the feature filter on a small sample of the data
set and estimate selectivity, discarding filters that are not effective.
To evaluate 2) for a feature f , we also use a sample of both tables,
computing the join result jf− with all feature filters except f , as
well as the join result with f , jf+ . We then measure the fraction
|j

f−−j
f+ |

|j
f− |

and if it is below some threshold, we discard that feature

filter clause from the join.
For case 3) (feature ambiguity), we use a measure called inter-rater

reliability (IRR), which measures the extent to which workers agree.
As a quantitative measure of IRR, we utilize Fleiss’ κ [4]. Fleiss’
κ is used for measuring agreement between two or more raters on
labeling a set of records with categorical labels (e.g., true or false).
It is a number between -1 and 1, where a higher number indicates
greater agreement. A κ of 0 roughly means that the ratings are what
would be expected if the ratings had been sampled randomly from a
weighted distribution, where the weights for a category are propor-
tional to the frequency of that category across all records. For feature
filters, if we measure κ to be below some small positive threshold for
a given filter, we discard it from our filter set. Due to our use of
Fleiss’ κ, Qurk currently only supports detecting ambiguity for cate-
gorical features, although in some cases, range-valued features may
be binned into categories.

3.3 Experiments
We now explore the various join implementations and the effects

of batching and feature filtering. We also explore the quality of
worker output as they perform more tasks.

(a) Simple Join (b) Naive Batching (c) Smart Batching

2: Three interfaces for the join operator. Elements are resized for readability.
Implementation True Pos. True Pos. True Neg True Neg

(MV) (QA) (MV) (QA)
IDEAL 20 20 380 380
Simple 19 20 379 376
Naive 19 19 380 379
Smart 20 20 380 379

1: Baseline comparison of three join algorithms with no batching
enabled. Each join matches 20 celebrities in two tables, resulting in
20 image matches (1 per celebrity) and 380 pairs with non-matching
celebrities. Results reported for ten assignments aggregated from
two trials of five assignments each. With no batching enabled, the
algorithms have comparable accuracy.

3.3.1 Dataset
In order to test join implementations and feature filtering, we cre-

ated a celebrity join dataset. This dataset contains two tables. The
first is celeb(name text, img url), a table of known celebri-
ties, each with a profile photo from IMDB3. The second table is
photos(id int, img url), with of images of celebrities col-
lected from People Magazine’s collection of photos from the 2011
Oscar awards.

Each table contains one image of each celebrity, so joining N cor-
responding rows from each table naively takes N2 comparisons, and
has selectivity 1

N
.

3.3.2 Join Implementations
In this section, we study the accuracy, price, and latency of the

celebrity join query described in Section 2.4.
We run each of the join implementations twice (Trial #1 and #2)

with five assignments for each comparison. This results in ten com-
parisons per pair. For each pair of trials, We ran one trial in the
morning before 11 AM EST, and one in the evening after 7 PM EST,
to measure variance in latency at different times of day. All assign-
ments are priced at $0.01, which costs $0.015 per assignment due to
Amazon’s half-cent HIT commission.

We use the two methods described in Section 2.1 to combine the
join responses from each assignment. For MajorityVote, we
identify a join pair if the number of positive votes outweighs the
negative votes. For QualityAdjust, we generate a corpus that
contains each pair’s Yes, No votes along with the Amazon-specified
Turker ID for each vote. We execute the algorithm in [6] for five iter-
ations on the corpus, and parametrize the algorithm to penalize false
negatives twice as heavily as false positives.
Baseline Join Algorithm Comparison: The first experiment veri-
fies that the three join implementations achieve similar accuracy in
unbatched form. Table 1 contains the results of the joins of a sample
of 20 celebrities and matching photos. The ideal algorithm results
in 20 positive matches and 380 negative matches (pairs which do
not join). The true positives and negatives for MajorityVote and
3http://www.imdb.com

QualityAdjust on all ten assignments per pair are reported with
the prefixes MV and QA, respectively. From these results, it is evi-
dent that all approaches work fairly well, with at most 1 photo which
was not correctly matched (missing true positive). We show in the
next section that using QA and MV is better than trusting any one
worker’s result.

!"

!#$"

!#%"

!#&"

!#'"

("

)*+,-." /012."3" /012."4" /012."(!")+056"
7"

)+056"
373"

!"
#$
%&

'(
&)
(*
&"
"+
$,
(-
'.
/
+"
.(

859.":;<*=2.<">?@A" 859.":;<*=2.<">BCA"

859."/.D0=2.<">?@A" 859."/.D0=2.<">BCA"

3: Fraction of correct answers on celebrity join for different batching
approaches. Results reported for ten assignments aggregated from
two runs of five assignments each. Joins are conducted on two tables
with 30 celebrities each, resulting in 30 matches (1 per celebrity) and
870 non-matching join pairs.

!"

!#$"

%"

%#$"

&"

'()*+," -./0,"%!" -./0,"$" -./0,"1" ').23"141" ').23"&4&"

!"
#$
%&
'(
)*
+,
-(

./0%(1234$2$%#"5/%,(

$!5" 6$5" %!!5"

4: Completion time in hours of the 50th, 95th, and 100th per-
centile assignment for variants of celebrity join on two tables with
30 celebrities each.

Effect of Batching: In our next experiment, we look at the effect
of batching on join quality and price. We compared our simple al-
gorithm to naive batching with 3, 5, and 10 pairs per HIT and smart
batching with a 2×2 and 3×3 grid, running a celebrity join between

two images tables with 30 celebrity photos in each table. The answer
quality results are shown in Figure 3. There are several takeaways
from this graph.

First, all batching schemes except Smart 2x2, which performs as
well as the Simple Join, do have some negative effect on the overall
total number of true positives. When using QA, the effect is relatively
minor with 1–5 additional false negatives on each of the batching
schemes. There is not a significant difference between naive and
smart batching. Batching does not significantly affect the overall
true negative rate.

Second, QA does better than MV in improving true positive result
quality on the batched schemes. This is likely because QA includes
filters for identifying spammers and sloppy workers, and these larger,
batched schemes are more attractive to workers that quickly and in-
accurately complete the tasks. The overall error rate between individ-
ual trials, with 5 assignments per pair, was approximately the same.
However, individual trials are more vulnerable to a small number of
spammers, which results in higher variance in accuracy.

Third, MV and QA often achieve far higher accuracy as compared
to the expected accuracy from asking a single worker for each HIT.
In the Simple experiments, the expected true positive rate of an aver-
age worker was 235/300 = 78%, whereas MV was 93%. MV per-
formed the worst in the Smart 3x3 experiments, yet still performed
as well the expected true positive rate of 158/300 = 53%. In all
cases, QA performed significantly better.

We also measured the cost (in dollars) of running the complete
join (900 comparisons) for the two trials (with 10 assignments per
pair) at a cost of $0.015 per assignment ($0.01 to the worker, $0.005
to Amazon). The cost of a naive join is thus 900 × $0.015 × 10 =
$135.00. The cost falls proportionally with the degree of batching
(e.g., naive 10 reduces cost by a factor of 10, and a 3x3 join reduces
cost by a factor of 9), resulting in a cost of around $13.50.

Figure 4 shows end-to-end latency values for the different join im-
plementations, broken down by the time for 50%, 95%, and 100%
percent of the assignments to complete. We observe that a reduction
in HITs with batching reduces latency, even though fewer HITs are
posted and each HIT contains more work. Both SimpleJoin trials
were slower than all other runs, but the second SimpleJoin trial was
particularly slow. This illustrates the difficulty of predicting latency
in a system as dynamic as MTurk. Finally, note that in several cases,
the last 50% of wait time is spent completing the last 5% of tasks.
This occurs because the small number of remaining tasks are less ap-
pealing to Turkers looking for long batches of work. Additionally,
some Turkers pick up and then abandon tasks, which temporarily
blocks other Turkers from starting them.

3.3.3 Assignments vs. Accuracy
One concern is that worker performance will degrade as they exe-

cute more tasks and become bored or less cautious. This is particu-
larly a concern as our results (and those of CrowdDB [5]) suggest the
number of tasks completed by each worker is roughly Zipfian, with
a small number of workers completing a large fraction of the work.

To test if the amount of work done by a worker is negatively cor-
related with the quality of his or her work, we performed a linear
regression on accuracy. For a combination of responses to the two
simple 30×30 join tasks, we fit the number of tasks each worker did
with their accuracy (correct tasks

tasks completed), and found R2 = 0.028 with
p < .05. While accuracy and number of tasks completed are pos-
itively correlated (the slope, β, is positive), the correlation explains
less than 3% of the variance in accuracy. This suggests no strong
effect between work done and accuracy.

Trial # Combined? Errors Saved Comparisons Join Cost
1 Y 1 592 $27.52
2 Y 3 623 $25.05
1 N 5 633 $33.15
2 N 5 646 $32.18

2: Feature Filtering Effectiveness.
Omitted Feature Errors Saved Comparisons Join Cost

Gender 1 356 $45.30
Hair Color 0 502 $34.35
Skin Color 1 542 $31.28

3: Leave-One Out Analysis for the first combined trial. Removing
hair color maintains low cost and avoids false negatives.

3.3.4 Feature Filtering
Finally, we ran an experiment to measure the effectiveness of fea-

ture filtering. In this experiment, we asked workers to choose the
hair color, skin color, and gender of each of the 60 images in our two
tables. For each feature, we ran two trials with 5 votes per image in
each trial, combining answers using majority vote. We also ran two
trials with a combined interface where we asked workers to provide
all three features at once.

Table 2 shows the effectiveness of applying all feature filters. We
report the number of errors, which is the number of pairs that actu-
ally should have joined (out of 30) that didn’t pass all three feature
filters in the four trials, as well as the saved comparisons, which is
the number of comparisons (out of 870) that feature filtering helped
avoid. We also report the total join cost with feature filtering (without
feature filters the cost would be $67.50 for 5 assigments per HIT.)

From these results, we can see that feature filters substantially re-
duce the overall cost (by more than a factor of two), and that combin-
ing features both reduces cost and error rate. The reason that combin-
ing reduces error rate is that in the batched interface, workers were
much more likely to get hair color correct than in the non-batched
interface. We hypothesize that this is because when asked about all
three attributes at once, workers felt that they were doing a simple
demographic survey, while when asked solely any one feature (in
this case hair color), they may have overanalyzed the task and made
more errors.

We now look at the error rate, saved comparisons, and total cost
when we omit one feature from the three. The goal of this analysis is
to understand whether omitting one of these features might improve
join quality by looking at their effectiveness on a small sample of the
data as proposed in Section 3.2. The results from this analysis on the
first combined trial are shown in Table 3 (all of the trials had the same
result). From this table, we can see that omitting features reduces the
error rate, and that gender is by far the most effective feature to filter
on. From this result, we conclude that hair color should potentially
be left out. In fact, hair color was responsible for all of the errors in
filtering across all trials.

To see if we can use inter-rater reliability as a method for deter-
mining which attributes are ambiguous, we compute the value of κ
(as described in Section 3.2) for each of the attributes and trials. The
results are shown in Table 4. From the table, we can see that the
κ value for gender is quite high, indicating the workers generally
agree on the gender of photos. The κ value for hair is much lower,
because many of the celebrities in our photos have dyed hair, and
because workers sometimes disagree about blond vs. white hair. Fi-
nally, workers agree more about skin color when it is presented in
the combined interface, perhaps because they may feel uncomfort-
able answering questions about skin color in isolation.

Table 4 displays average and standard deviations of κ for 50 25%
random samples of celebrities in each trial. We see that these κ value
approximations are near the true κ value in each trial, showing that

Trial # Sample Size Combined? Gender κ (std) Hair κ (std) Skin κ (std)
1 100% Y 0.93 0.29 0.73
2 100% Y 0.89 0.42 0.95
1 100% N 0.85 0.43 0.45
2 100% N 0.94 0.40 0.47
1 25% Y 0.93 (0.04) 0.26 (0.09) 0.61 (0.37)
2 25% Y 0.89 (0.06) 0.40 (0.11) 0.95 (0.20)
1 25% N 0.85 (0.07) 0.45 (0.10) 0.39 (0.29)
2 25% N 0.93 (0.06) 0.38 (0.08) 0.47 (0.24)

4: Inter-rater agreement values (κ) for features. For each trial, we
display κ calculated on the entire trial’s data and on 50 random sam-
ples of responses for 25% of celebrities. We report the average and
standard deviation for κ from the 50 random samples.

Qurk can use early κ values to accurately estimate worker agreement
on features without exploring the entire dataset.

From this analysis, we can see that κ is a promising metric for
automatically determining that hair color (and possibly skin color)
should not be used as a feature filter.

3.4 Summary
We found that for joins, batching is an effective technique that

has small effect on result quality and latency, offering an order-of-
magnitude reduction in overall cost. Naive and smart batching per-
form similarly, with smart 2x2 batching and QA achieving the best
accuracy. In Section 5 we show an example of a smart batch run
where a 5x5 smart batch interface was acceptable, resulting in a 25x
cost reduction. We have never seen such large batches work for naive
batching. We found that the QA scheme in [6] significantly improves
result quality, particularly when combined with batching, because
it effectively filters spammers. Finally, feature filtering offers sig-
nificant cost savings when a good set of features can be identified.
Putting these techniques together, we can see that for celebrity join,
feature filtering reduces the join cost from $67.50 to $27.00. Adding
batching can further reduce the cost by up to a factor of ten, yielding
a final cost for celebrity join of $2.70.

4. SORT OPERATOR
Users often want to perform a crowd-powered sort of a dataset,

such as “order these variants of a sentence by quality,” or “order the
images of animals by adult size.”

As with joins, the HITs issued by Qurk for sorting do not actually
implement the sort algorithm, but provide an algorithm with infor-
mation it needs by either: 1) comparing pairs of items to each other,
or 2) assigning a rating to each item. The Qurk engine then sorts
items using pairwise comparisons or their ratings. In this section we
describe our two basic implementations of these ideas, as well as a
hybrid algorithm that combines them. We also compare the accuracy
and total number of HITs required for each approach.

4.1 Implementation

4.1.1 Comparison-based
The comparison-based approach (Figure 5a) asks workers to di-

rectly specify the ordering of items in the dataset. The naive ap-
proach requires

`
N
2

´
tasks per sort assignment, which is expensive for

large datasets. While the optimal number of comparisons is O(NlogN)
for traditional sort algorithms, we now explain why we require more
comparison tasks.

In practice, because these individual sort HITs are done by differ-
ent workers, and because tasks themselves may be ambiguous, it can
be the case that transitivity of pairwise orderings may not hold. For
example, worker 1 may decide that A > B and B > C, and worker
2 may decide that C > A. One way to resolve such ambiguities is

(a) Comparison Sort

(b) Rating Sort
5: Two interfaces for the order by operator.

to build a directed graph of items, where there is an edge from item
i to item j if i > j. We can run a cycle-breaking algorithm on the
graph, and perform a topological sort to compute an approximate or-
der. Alternatively, as we do in our implementation, we can compute
the number of HITs in which each item was ranked higher than other
items. This approach, which we call “head-to-head,” provides an in-
tuitively correct ordering on the data, which is identical to the true
ordering when there are no cycles.

Cycles also mean that we can’t use algorithms like Quicksort that
only perform O(NlogN) comparisons, because these algorithms don’t
compare all elements, and yield unpredictable results in ambiguous
situations (which we found while running our experiments).

Instead of comparing a single pair at a time, our interface, shown
in Figure 5a, displays groups of S items, and asks the worker to
rank items within a group relative to one-another. The result of each
task is

`
S
2

´
pairwise comparisons, which reduces the number of HITs

to N×(N−1)
S×(S−1)

. Although the number of HITs is large, they can be
executed in parallel. We can batch b such groups in a HIT to reduce
the number of hits by a factor of b.

4.1.2 Rating-based
The second approach is to ask workers to rate each item in the

dataset along a numerical scale. We then compute the mean of all
ratings for each item, and sort the dataset using these means.

Figure 5b illustrates the interface for a single rating task. The
worker is shown a single item and asked to rate it along a seven-point
Likert Scale [9], which is commonly used for subjective survey data.
In order to provide context to assign a rating, we show ten randomly
sampled images along the top of the interface. Showing a random
selection allows us to give the worker a sense for the dataset without
knowing its distribution a priori.

The advantage of this approach are that it only requires O(N)
HITs. We can batch b ratings in a HIT to reduce the number of
HITs by a factor of b. The variance of the rating can be reduced
by asking more workers to rate the item. The drawback is that each

item is rated independently of other items, and the relative ordering
of an item pair’s mean ratings may not by fully consistent with the
ordering that would result if workers directly compared the pair.

4.1.3 Hybrid Algorithm
We now propose a hybrid approach that initially orders the data

using the rating-based sort and generates a list L. Each item li ∈ L
has an average rating µi, as well as a standard deviation σi computed
from votes used to derive the rating. The idea of our hybrid approach
is to iteratively improve L by identifying subsets of S items that may
not be accurately ordered and using the comparison-based operator
to order them. The user can control the resulting accuracy and cost
by specifying the number of iterations (where each iteration requires
one additional HIT) to perform.

We explored several techniques for selecting size-S windows for
comparisons. We outline three representative approaches:

Random: In each iteration, pick S items randomly from L.

Confidence-based: Let wi = {li, ..., li+S}, meaning wi contains
the S consecutive items lj ∈ L starting from item li. For each pair
of items a, b ∈ wi, we have their rating summary statistics (µa, σa)
and (µb, σb). Where µa < µb, we compute ∆a,b, the difference
between one standard deviation above µa and one standard deviation
below µb:

∆a,b = max(µa + σa − µb − σb, 0)

For all windows wi, we then compute Ri =
P

(a,b)∈wi
∆a,b and

order windows in decreasing order of Ri, such that windows with
the most standard deviation overlap, and thus least confidence in their
ratings, are reordered first.

Sliding window: The algorithm picks window

wi = {li mod |L|, ..., l(i+S) mod |L|}

with i starting at 1. In successive iterations, i is incremented by t
(e.g., i = (i + t)), which the mod operation keeps the range in
[1, |L|]. If t is not a divisor of L, when successive windows wrap
around L, they will be offset from the previous passes.

4.2 Experiments
We now describe experiments that compare the performance and

accuracy effects of the Compare and Rate sort implementations,
as well as the improvements of our Hybrid optimizations.

The experiments compare the relative similarity of sorted lists us-
ing Kendall’s Tau (τ), which is a measure used to compute rank-
correlation [7]. We use the τ − b variant, which allows two items
to have the same rank order. The value varies between -1 (inverse
correlation), 0 (no correlation), and 1 (perfect correlation).

For each pair in Compare, we obtain at least 5 comparisons and
take the majority vote of those comparisons. For each item in Rate,
we obtain 5 scores, and take the mean of those scores. We ran two
trials of each experiment.

4.2.1 Datasets
The squares dataset contains a synthetically generated set of squares.
Each square is n× n pixels, and the smallest is 20×20. A dataset of
size N contains squares of sizes {(20+3∗i)×(20+3∗i)|i ∈ [0, N)}.
This dataset is designed so that the sort metric (square area) is clearly
defined, and we know the correct ordering.

The animals dataset contains 25 images of randomly chosen animals
ranging from ants to humpback whales. In addition, we added an
image of a rock and a dandelion to introduce uncertainty. This is
a dataset on which comparisons are less certain, and is designed to
show relative accuracies of comparison and rating-based operators.

4.2.2 Square Sort Microbenchmarks
In this section, we compare the accuracy, latency, and price for

the query described in Section 2.3, in which workers sort squares by
their size.
Comparison batching. In our first experiment, we sort a dataset
with 40 squares by size. We first measure the accuracy of Compare
as the group size S varies between 5, 10, and 20. Batches are gener-
ated so that every pair of items has at least 5 assignments. Our batch-
generation algorithm may generate overlapping groups, so some pairs
may be shown more than 5 times. The accuracy is perfect when
S = 5 and S = 10 (τ = 1.0 with respect to a perfect ordering).
The rate of workers accepting the tasks dramatically decreases when
the group size is above 10 (e.g., the task takes 0.3 hours with group
size 5, but more than 1 hour with group size 10.) We stopped the
group size 20 experiment after several hours of uncompleted HITs.
We discuss this effect in more detail, and ways to deal with it, in
Section 6.
Rating batching. We then measure the accuracy of the Rate im-
plementation. The interface shows 10 sample squares, sampled ran-
domly from the 40, and varies the batch size from 1 to 10, requiring
40 to 4 HITs, respectively. In all cases, the accuracy is lower than
Compare, with an average τ of 0.78 (strong but not perfect rank-
ing correlation) and standard deviation of 0.058. While increasing
batch size to large amounts made HITs less desirable for turkers and
eventually increased latency, it did not have a noticeable effect on ac-
curacy. We also found that 5 assignments per HIT resulted in similar
accuracy to 10 assignments per HIT, suggesting diminishing returns
for this task.
Rating granularity. Our next experiment is designed to measure if
the granularity of the seven-point Likert scale affects the accuracy
of the ordering as the number of distinct items increases. We fix the
batch size at 5, and vary the size of the dataset from 20 to 50 in incre-
ments of 5. The number of HITs vary from 4 to 10, respectively. As
with varying batch size, the dataset size does not significantly impact
accuracy (avg τ 0.798, std 0.042), suggesting that rating granularity
is stable with increasing dataset size. While combining 10 assign-
ments from two trials did reduce τ variance, it did not significantly
affect the average.

4.2.3 Query Ambiguity: Sort vs. Rank
The square sort microbenchmarks indicate that Compare is more

accurate than Rate. In our next experiment, we compare how in-
creasing the ambiguity of sorting tasks affects the accuracy of Rate
relative to Compare. The goal is to test the utility of metrics that
help predict 1) if the sort task is feasible at all, and 2) how closely
Rate corresponds to Compare. The metric we use to answer 1) is
a modified version of Fleiss’ κ (which we used for inter-reliability
rating in joins)4, and the metric to answer 2) is τ . The experiment
uses both the squares and animals datasets.

We generated five queries that represent five sort tasks:
Q1: Sort squares by size
Q2: Sort animals by “Adult size”
Q3: Sort animals by “Dangerousness”
Q4: Sort animals by “How much this animal belongs on Saturn”
Q5: (Artificially) generate random Compare and Rate responses.

The instructions for Q3 and 4 were deliberately left open-ended to
increase the ambiguity. Q4 was intended to be a nonsensical query
that we hoped would generate random answers. As we describe be-
low, the worker agreement for Q4’s Compare tasks was higher than

4Traditional Fleiss’ κ calculates priors for each label to compensate
for bias in the dataset (e.g., if there are far more small animals than
big animals). We found this doesn’t work well for sort-based com-
parator data due to correlation between comparator values, and so we
removed the compensating factor (the denominator in Fleiss’ κ).

!"#$%

"%

"#$%

"#&%

"#'%

"#(%

)%

*)% *$% *+% *&% *,%

!"
##

"$
%"
&'

-./% -./!0.1234% 5.22.% 5.22.!0.1234%

6: τ and κ metrics on 5 queries.

Q5, which suggests that even for nonsensical questions, workers will
apply and agree on some preconceived sort order.

For lack of objective measures, we use the Compare results as
ground truth. The results of running Compare on queries 2, 3, and
4 are as follows:

Size: ant, bee, flower, grasshopper, parrot, rock, rat, octopus, skunk,
tazmanian devil, turkey, eagle, lemur, hyena, dog, komodo dragon,
baboon, wolf, panther, dolphin, elephant seal, moose, tiger, camel,
great white shark, hippo, whale
Dangerousness: flower, ant, grasshopper, rock, bee, turkey, dolphin,
parrot, baboon, rat, tazmanian devil, lemur, camel, octopus, dog, ea-
gle, elephant seal, skunk, hippo, hyena, great white shark, moose,
komodo dragon, wolf, tiger, whale, panther
Belongs on Saturn5: whale, octopus, dolphin, elephantseal, greatwhite-
shark, bee, flower, grasshopper, hippo, dog, lempur, wolf, moose,
camel, hyena, skunk, tazmaniandevil, tiger, baboon, eagle, parrot,
turkey, rat, panther, komododragon, ant, rock

Figure 6 show τ and κ for each of the five queries. Here κ is
computed on the comparisons produced by the Compare tasks. The
figure also shows the effect of computing these metrics on a random
sample of 10 of the squares/animals rather than the entire data set
(the sample bars are from 50 different samples; error bars show the
standard deviation of each metric on these 50 samples.)

The results show that the ambiguous queries have progressively
less worker agreement (κ) and progressively less agreement between
sorting and rating (τ). While κ decreases between Q3 and Q4 (dan-
gerousness and Saturn), it is not as low in Q4 as it is in Q5 (Saturn
and random). This suggests that while there is little agreement be-
tween workers on animals which belong on Saturn, their level of
agreement is better than random. For example, Komodo Dragon
was consistently rated as highly adaptable to Saturn’s environment.
The decrease in κ with increasing ambiguity suggests that κ is a use-
ful signal in identifying unsortable datasets.

τ is significantly lower for Q4 than for Q3, which suggests that
ordering by rating does not work well for Q4 and that we should
probably use the Compare method for this workload rather than the
Rate method. For Q1, Q2, and Q3, however, Rate agrees rea-
sonably well with Compare, and because it is significantly cheaper,
may be a better choice.

Finally, we note that sampling 10 elements is an effective way to
estimate both of these metrics, which means that we can run both
Rate and Compare on samples, compute τ and κ, and decide
whether to order the rest of the data set with Rate or Compare
(depending on τ), or to stop ordering at that point (if κ is very low.)

4.2.4 Hybrid Approach

5Note that while size and dangerousness have relatively stable or-
ders, the Saturn list varies drastically as indicated by low κ. For
example, in three runs of the query, rock appeared at the end, near
the beginning, and in the middle of the list.

!"#$%

!"&%

!"&$%

!"'%

!"'$%

(%

!%)!% *!% +!% &!%

!"
#$

%$&'!($
,-./01% 20.3/4.54% 67./089$:% 67./089+:% 201;-<4% ,-=4%

7: Hybrid sort algorithms on the 40-square dataset.

Our final set of experiments measure how the hybrid approaches
perform in terms of accuracy with increasing number of HITs. We
aim to understand how the sort order of hybrid changes between
Rank quality and Compare quality with each additional HIT.

The first experiment uses the 40-square dataset. The comparison
interface shows 5 items at a time. We set window size S = 5 to be
consistent with the number of items in a single comparison HIT. Fig-
ure 7 shows how τ improves with each additional HIT. Compare
(upper right circle) orders the list perfectly, but costs 78 HITs to
complete. In contrast, Rate (lower left square) achieves τ = 0.78,
but only costs 8 HITs (batch size=5). In addition to these two ex-
tremes, we compared four schemes, based on those described in Sec-
tion 4.1.3: random, confidence-based, windowing with t = 5 (Win-
dow 5), and windowing with t = 6 (Window 6).

Overall, Window 6 performs best, achieving τ > .95 in under
30 additional HITs, and converging to τ = 1 in half the HITs that
Compare requires. Window 5 performs poorly because t is a multi-
ple of the number of squares, so multiple passes over the data set (be-
yond the 8th HIT) do not improve the ordering. As the list becomes
more ordered, random is more likely to compare items that are cor-
rectly ordered, and thus wastes comparisons. Confidence does not
perform as well as Window 6—prioritizing high-variance regions as-
sists with fixing local sort order mistakes, but does not systematically
move items that are far from their correct positions. In the sliding
window scheme, after several passes through the dataset items that
were far away from their correct position can migrate closer to the
correct location.

Finally, we executed Q2 (animal size query) using the hybrid scheme
and found similar results between the approaches. Ultimately, the
window-based approach performed the best and improved τ from
.76 to .90 within 20 iterations.

4.3 Summary
In summary, we presented two sort interfaces and algorithms based

on ratings (linear complexity) and comparisons (quadratic complex-
ity). We found that batching is an effective way to reduce the com-
plexity of sort tasks in both interfaces. We found that while signifi-
cantly cheaper, ratings achieve sort orders close to but not as good as
comparisons. Using two metrics, τ and a modified κ, we were able
to determine when a sort was too ambiguous (κ) and when rating
performs commensurate with comparison (τ).

Using a hybrid window-based approach that started with ratings
and refined with comparisons, we were able to get similar (τ > .95)
accuracy to sorts at less than one-third the cost.

Operator Optimization # HITs
Join Filter 43
Join Filter + Simple 628
Join Filter + Naive 160
Join Filter + Smart 3x3 108
Join Filter + Smart 5x5 66
Join No Filter + Simple 1055
Join No Filter + Naive 211
Join No Filter + Smart 5x5 43

Order By Compare 61
Order By Rate 11

Total (unoptimized) 1055 + 61 = 1116
Total (optimized) 66 + 11 = 77

5: Number of HITs for each operator optimization

5. END TO END QUERY
In the previous sections, we examined how different operator op-

timizations affected price, accuracy, and latency, and evaluated them
in isolation. In this section, we execute a complex query that utilizes
both join and sort operators, and show that Qurk’s optimizations can
reduce the overall number of HITs by a factor of 14.5 as compared
to a naive approach, and still generate comparable results.

5.1 Experimental Setup
The query joins a table of movie frames and a table of actor photos,

looking for frames containing only the actor. For each actor, the
query finds frames where the actor is the main focus of the frame
and orders the frames by how flattering they are:

SELECT name, scene.img
FROM actors JOIN scenes

ON inScene(actors.img, scenes.img)
AND POSSIBLY numInScene(scenes.img) > 1

ORDER BY name, quality(scenes.img)

The query uses three crowd-based UDFs:
numInScene, a generative UDF that asks workers to select the num-
ber of people in the scene given the options (0, 1, 2, 3+, UNKNOWN).
This UDF was designed to reduce the number of images input into
the join operator.
inScene, an EquiJoin UDF that shows workers images of actors and
scenes and asks the worker to identify pairs of images where the actor
is the main focus of the scene.
quality, a Rank UDF that asks the worker to sort scene images by
how flattering the scenes are. This task is highly subjective.

We tried several variants of each operator. For the numInScene
filter we executed feature extraction with batch size 4. We also tried
disabling the operator and allowing all scenes to be input to the join
operator. For the inScene join, we use Simple, Naive batch 5,
and Smart batch 3×3 and 5×5. For the quality sort, we used
Compare with group size 5, and Rate batch 5.

The dataset was created by extracting 211 stills at one second in-
tervals from a three-minute movie; actor profile photos came from
the Web.

5.2 Results
The results are summarized in Table 5. The bottom two lines show

that a simple approach based on a naive, unfiltered join plus compar-
isons requires 1116 hits, whereas applying our optimizations reduces
this to 77 hits. We make a few observations:
Smart Join: Surprisingly, we found that workers were willing to
complete a 5x5 SmartJoin, despite its relative complexity. This may
suggest that SmartJoin is preferred to naive batching.
Feature Extraction: We found that the benefit of numInScene
feature extraction was outweighed by its cost, as the the selectivity
of the predicate was only 55%, and the total number of HITs required

to perform Smart Join with a 5x5 grid was relatively small. This il-
lustrates the need for online selectivity estimation to determine when
a crowd-based predicate will be useful.
Query Accuracy: The numInScene task was very accurate, re-
sulting in no errors compared to a manually-evaluated filter. The
inScene join did less well, as some actors look similar, and some
scenes showed actors from the side; we had a small number of false
positives, but these were consistent across implementations. Finally,
the scene quality operator had high variance and was quite sub-
jective; in such cases Rate works just as well as Compare.

6. DISCUSSION AND FUTURE WORK
In this section, we discuss issues and lessons learned from our

implementation and efforts running jobs on Mechanical Turk.

Reputation: While not directly related to database implementation,
it is important to remember that your identity carries reputation on
MTurk. Turkers keep track of good and bad requesters, and share this
information on message boards such as Turker Nation6. By quickly
approving completed work and responding to Turker requests when
they contact you with questions, you can generate a good working
relationship with Turkers.

When we started as requesters, Turkers asked on Turker Nation if
others knew whether we were trustworthy. A Turker responded:

[requester name] is okay I don’t think you need to worry. He is
great on communication, responds to messages and makes changes
to the Hits as per our feedback.

Turker feedback is also a signal for price appropriateness. For ex-
ample, if a requester overpays for work, Turkers will send messages
asking for exclusive access to their tasks.

Choosing Batch Size: We showed that batching can dramatically re-
duce the cost of sorts and joins. In studying different batch sizes, we
found batch sizes at which workers refused to perform tasks, leaving
our assignments uncompleted for hours at a time. As future work, it
would be interesting to compare adaptive algorithms for estimating
the ideal batch size. Briefly, such an algorithm performs a binary
search on the batch size, reducing the size when workers refuse to do
work or accuracy drops, and increasing the size when no noticeable
change to latency and accuracy is observed.

As a word of caution, the process of adaptively finding the appro-
priate batch sizes can lead to worker frustration. The same Turker
that initially praised us in Section 6 became frustrated enough to list
us on Turker Nation’s “Hall of Shame:”

These are the “Compare celebrity pictures” Hits where you had to com-
pare two pictures and say whether they were of the same person. The
Hit paid a cent each. Now there are 5 pairs of pictures to be checked
for the same pay. Another Requester reducing the pay drastically.

Hence, batching has to be applied carefully. Over time, ideal start-
ing batch sizes can be learned for various media types, such as joins
on images vs. joins on videos.

Worker Selection: We found that the QA method of Ipeirotis et
al. [6] works better than simple majority vote for combining multiple
assignment answers and is able to effectively eliminate and identify
workers who generate spam answers. Majority vote can be badly
skewed by low-quality answers and spam.

To allow us to compare across experiments, we elected not to ban
workers from completing future tasks even if they were clearly gen-
erating poor output. In a non-experimental scenario, one could use
the output of the QA algorithm to ban Turkers found to produce poor
results, reducing future costs.

6http://turkers.proboards.com/

One limitation of QA is that it is designed for categorical data,
when workers assign categories to records. Devising a similar method
for ordinal and interval data is interesting future work.

Scaling Up Datasets: In our experiments, we described techniques
that provide order-of-magnitude cost reductions in executing joins
and sorts. Still, scaling datasets by another order of magnitude or
two would result in prohibitive costs due to the quadratic complex-
ity of both join and sort tasks. Hence, one important area of future
work is to integrate human computation and machine learning, train-
ing classifiers to perform some of the work, and leaving humans to
peform the more difficult tasks.

Whole Plan Budget Allocation: We have described how Qurk can
determine and optimize the costs of individual query operators. An-
other important problem is how to assign a fixed amount of money
to an entire query plan. Additionally, when there is too much data
to process given a budget, we would like Qurk to be able to decide
which data items to process in more detail.

Iterative Debugging: In implementing queries in Qurk, we found
that workflows frequently failed because of poor Turker interface de-
sign or the wording of a question. Crowd-powered workflow engines
could benefit from tools for iterative debugging.

As future work, we want to design a SQL EXPLAIN-like interface
which annotates operators with signals such as rater agreement, com-
parison vs. rating agreement, and other indicators of where a query
has gone astray. Additionally, it is important to generate represen-
tative datasets for trial runs on new workflows before expending the
entire budget on a buggy user interface element.

7. RELATED WORK
The database community has recently seen increasing interest in

crowdsourced databases. Franklin et al. present CrowdDB [5], a
database with a declarative interface and operators for handling joins,
sorts, and generative queries in their data definition language. Their
experiments explore the properties of MTurk and show the feasibility
of joins and sorts, but they do not provide a detailed discussion of im-
plementation alternatives or performance tradeoffs. Our contribution
is to study how to achieve order-of-magnitude price improvements
while maintaining result accuracy. Parameswaran et al. present the
vision for a crowdsourced database including a Datalog-based query
language for querying humans, and provide some thoughts on how
to reason about uncertain worker responses [13].

Systems for posting tasks to MTurk are available outside the databases
community. TurKit [10] is a system and programming model by Lit-
tle et al. that allows developers to iteratively build MTurk-based ap-
plications while caching HIT results between program runs. Kittur et
al. present CrowdForge [8], a MapReduce-style model for large task
decomposition and verification.

Because we retrieve multiple worker responses to each question,
we must decide how to arrive at the correct answer given several. A
simple approach, used by CrowdFlower7, is to require gold standard
data with which to test worker quality, and ban workers who perform
poorly on the gold standard. For categorical data, selecting a ma-
jority vote of responses is also powerful. Dawid and Skene present
an expectation maximization technique for for iteratively estimating
worker and result quality [3] in the absense of gold standard data.
Ipeirotis et al. modify this technique to consider not only worker
quality, but also correct for bias between workers [6] on categorical
data. We utilize this last technique to improve join results.

Mason and Watts study the effects of price on quantity and quality
of work [12]. They find that workers are willing to perform more
tasks when paid more. They also find that for a given task difficulty,
7http://crowdflower.com

result accuracy is not improved by increasing worker wages. This
leads to our experiment design choice of studying how to reduce the
number of HITs while maintaining accuracy and per-HIT cost.

8. CONCLUSION
We presented an approach for executing joins and sorts in a declar-

ative database where humans are employed to process records. Our
system, Qurk, runs on top of crowdsourcing platforms like MTurk.
For join comparisons, we developed three different UIs (simple, naive
batching, and smart batching), and showed that the batching inter-
faces can reduce the total number of HITs to compute a join by an
order of magnitude. We showed that feature filtering can pre-filter
join results to avoid cross products, and that our system can auto-
matically select the best features. We presented three approaches to
sorting: comparison-based, rating-based, and a hybrid of the two.
We showed that rating often does comparably to pairwise compar-
isons, using far fewer HITs, and presented signals κ and τ that can
be used to determine if a data set is sortable, and how well rating per-
forms relative to comparison. We also present a hybrid scheme that
uses a combination of rating and comparing to produce a more accu-
rate result than rating while using fewer HITs than comparison. We
showed on several real-world datasets that we can greatly reduce the
total cost of queries without sacrificing accuracy – we reduced the
cost of a join on a celebrity image data set from $67 to about $3, a
sort by 2× the worst-case cost, and reduced the cost of an end-to-end
example by a factor of 14.5.

9. REFERENCES
[1] M. S. Bernstein et al. Soylent: a word processor with a crowd inside. In

UIST, pages 313–322, New York, NY, USA, 2010.
[2] J. P. Bigham et al. Vizwiz: nearly real-time answers to visual

questions. In UIST, pages 333–342, 2010.
[3] A. P. Dawid and A. M. Skene. Maximum likelihood estimation of

observer error-rates using the em algorithm. Journal of the Royal
Statistical Society., 28(1):pp. 20–28, 1979.

[4] J. L. Fleiss. Measuring nominal scale agreement among many raters. In
Psychological Bulletin, 1971.

[5] M. Franklin, D. Kossmann, T. Kraska, S. Ramesh, and R. Xin.
CrowdDB: Answering queries with crowdsourcing. In SIGMOD 2011.

[6] P. G. Ipeirotis, F. Provost, and J. Wang. Quality management on
amazon mechanical turk. In SIGKDD Workshop on Human
Computation, pages 64–67, New York, NY, USA, 2010. ACM.

[7] M. G. Kendall. A new measure of rank correlation. Biometrika,
30(1-2):81–93, 1938.

[8] A. Kittur, B. Smus, and R. E. Kraut. CrowdForge: Crowdsourcing
Complex Work. Technical report, 2011.

[9] R. Likert. A technique for the measurement of attitudes. Archives of
Psychology, 140:1–55, 1932.

[10] G. Little et al. Turkit: human computation algorithms on mechanical
turk. In UIST, pages 57–66, 2010.

[11] A. Marcus, E. Wu, et al. Crowdsourced databases: Query processing
with people. In CIDR 2011.

[12] W. Mason and D. J. Watts. Financial incentives and the “performance
of crowds”. HCOMP 2009.

[13] A. Parameswaran and N. Polyzotis. Answering queries using
databases, humans and algorithms. In CIDR 2011.

