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ABSTRACT 

Queries over large scale (petabyte) data bases often mean 

waiting overnight for a result to come back. Scale costs 

time. Such time also means that potential avenues of 

exploration are ignored because the costs are perceived to 

be too high to run or even propose them. With 

sampleAction we have explored whether interaction 

techniques to present query results running over only 

incremental samples can be presented as sufficiently 

trustworthy for analysts both to make closer to real time 

decisions about their queries and to be more exploratory in 

their questions of the data. Our work with three teams of 

analysts suggests that we can indeed accelerate and open up 

the query process with such incremental visualizations.  
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INTRODUCTION 

The increased capacity to capture data from systems and 

sensors that generate it, from social networks to highway 

traffic flows, gives us an unprecedented opportunity to 

interrogate behavior from the individual to the complex 

system. Unfortunately, the speed at which this data can be 

explored, and the richness of the questions we might ask are 

currently compromised by the cost in time and resources of 

running our queries over such vast arrays of data. We have 

reverted to a batch-job era, where users formulate a query, 

wait for some time, and evaluate the results—a step 

backwards from the interactive querying that we expect in 

exploratory data analysis. 

Of course the database community has attempted to reduce 

query costs in a variety of ways. Strategies to accelerate 

large scale data processing are represented in systems like 

Dremel [9] and C-Store [18] that churn through large 

collections of data by pre-structuring the data and moving 

the computation closer to the data.  

So while computational and storage approaches make large 

scale queries possible, they still often restrict either the 

number and types of queries that might be run, or avenues 

that might be explored because the queries must be 

designed with such care to be worth the wait and the cost of 

queuing for the resource. 

One possible technique, proposed by Hellerstein and others 

[7], is to query databases incrementally, looking at ever-

larger segments of the dataset. These samples can be used 

to extrapolate estimated final values and the degree of 

certainty of the estimate. The analyst would get a response 

quickly by considering a large, initially unclear range of 

values that rapidly converge to more precise values. This 

approach may let an analyst iterate on a query with 

substantially decreased delay and increased flexibility: if 

the way forward is sufficiently clear from the samples, they 

can quickly refine queries or explore new parameters.  

There is an important interaction issue here. Analysts are 

accustomed to seeing precise figures, rather than 

probabilistic results, and may not be willing to act on partial 

information. Confidence intervals add a degree of 

complexity to a visualization, and may simply be confusing. 

In order for incremental analysis to be a viable technique, it 

will be important to understand how analysts interact with 

incremental data. 

Most research in incremental queries has gone into the 

technical aspects of the back-end [3,6]; we complement that 

technical agenda with an investigation of the interaction 

design challenges involved. Our exploration presented in 

this paper is two-fold: the production of an application with 

sufficient fidelity that will allow users to experience 

converging iterative estimates of their own data, and, in 

particular, to understand how this interaction enables an 

exploratory analysis process.  

In this paper, we present sampleAction, a tool that allows us 

to simulate the effects of interacting with very large 

datasets while supporting an iterative query interaction for 

large aggregates. Our simulator allows us to examine how 
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both user interfaces and data storage concepts may be 

effectively redesigned to be amenable to our incremental 

interaction approach. In our evaluation, we carried out in-

depth interviews with members of three different teams of 

data analysts, working in three different areas. The analysts 

reconstructed a series of queries from their own data in our 

system. We found that, after they had examined only a 

small fraction of the database with our interface, they 

overall found our representations of the incremental query 

results sufficiently robust that they were prepared either to 

abandon that query, refine it further, or create new ones 

previously unconsidered. Significantly, they were able to 

make these iterations rapidly, in real time.  

We contribute, first, a methodology for simulating 

aggregate queries against large data back-ends; we hope 

that this will allow researchers to more broadly explore the 

interaction issues that arise in this area. Second, we 

contribute observations of expert analyst behavior in 

interacting with approximate queries. 

Our paper draws on past research about incremental, 

approximate queries [4], as well as visualizations of 

uncertainty [15]. We present past work, followed by a 

rationale for the design and implementation approach and 

an overview and analysis of our sessions with the analysts. 

We discuss how our system enables analysts to make their 

decisions on incremental samples and the implications of 

our design approach for enhancing flexible data 

exploration.  

BACKGROUND AND RELATED WORK 

In this project, we visualize estimates on incremental data. 

Incremental analysis is an alternative to other techniques 

that are more familiar, but have disadvantages compared to 

our method. In this section, we first discuss these 

techniques in order to motivate incremental data analysis. 

We then discuss techniques for visualizing uncertainty, 

which we adapt for our visualization.  

Background on Handling Large Data for Visualization 

Information visualization is a popular way to help analysts 

make sense of large datasets. It allows an analyst to 

overview data quickly by seeing summary statistics, 

compared easily, through a selection of charts.  

Many visualizations are based on aggregate queries against 

of datasets. A dataset can be thought of as a table of data, 

made up of measures—the values being visualized—and 

dimensions, the categories into which the measures are 

divided. For example, in a sales database, an analysts might 

choose to create a bar chart (the visualization) showing 

average sales per customer (the measure) divided by 

different products (a dimension). In exploratory data 

visualization, it is common to rapidly iterate through 

different views and queries about a data-sets. In contrast, 

visualizations for reporting or presentations are usually 

prepared in advance and allow limited interaction. 

In a very large dataset, exploratory visualization becomes 

onerous: each query can take hours or days to compute 

before a result is ready to be seen on screen. There are 

several ways to deal with visualizing very large datasets. 

The simplest technique is to wait through a long processing 

job, allowing the job to run overnight. This has the virtue of 

precision, but loses out on speed. In particular, by waiting 

for hours for each query, a user writes off the possibility of 

iteratively exploring their dataset.  

Dremel [9] and other scale-out architectures have massively 

increased the speed of accessing data rows. These 

architectures are expensive, though, both in money and 

energy. An incremental database can help save computation 

costs by looking at fewer rows and spinning fewer disks. In 

addition, even large-scale architectures can be 

overwhelmed by ever-larger datasets, and datasets where it 

is expensive to access rows. 

The user can save computation time on queries by building 

an OLAP (Online Analytical Processing) cube [1]. An 

OLAP cube pre-aggregates a database by specifying 

dimensions and measures in advance. This allows users to 

explore those aggregated dimensions, at the cost of another 

long processing job. The results also limit flexibility, as 

users cannot easily add new dimensions after the cube has 

been built. 

If the dataset is well-organized as tabular data, a user might 

take a fixed-size sample and use exploratory visualization 

on the sample, using off-the-shelf software like Tableau
1
. 

Indeed, Tableau has an ability to handle samples from a 

large dataset, selected randomly. Tableau then allows rapid 

queries against the in-memory portion of the dataset. These 

queries can be interactive, but, as they are based on a 

sample, they cannot be precise—and the system does not 

provide a way for the user to know how good an 

approximation is the sample of the full dataset. Extending 

the idea of samples, Infobright [16], has explored the idea 

of using approximate SQL to allow for more responsive 

queries, although the estimates do not improve 

incrementally. 

With incremental, approximate analysis we avoid the 

difficulties of these approaches. Incremental analysis 

collects ever-larger samples in the back-end, and uses them 

to estimate the true value of a query. In addition, 

approximate queries can present confidence bounds: the 

region in which the final value is likely to fall. 

The system can respond quickly and flexibly as it acts on 

samples; over time it gains accuracy. Because the system is 

based around samples, it computes estimated values, rather 

than definitive results. In addition to the estimate, the 

system can compute a confidence interval for many types of 
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aggregate queries. This interval predicts the possible range 

of the true value.  

The CONTROL project initiated the area of online 

incremental data analysis; in the course of a series of papers 

[3,4,5], the project laid out an agenda for incremental 

analysis and laid out a technical infrastructure. Later 

projects by Jermaine and colleagues further explored 

incremental database queries [6,7]. All of these projects 

produce output including estimates and confidence 

intervals; several have prototyped possible visualizations, 

although none of them evaluate these visualizations. 

Incremental Visualization 

This project uses uncertainty visualization techniques to 

monitor estimates on incremental data. Neither of these 

component ideas are new individually: both Olston and 

Mackinlay [11] and Fisher [2] argue that uncertainty 

visualization would be a valuable output for incremental 

techniques. Neither paper on this work, however, offers an 

implementation nor examines how users would respond to 

the combined system. 

Uncertainty Visualization 

The research community has had a standing interest in 

visualizing uncertain data: researchers have addressed data 

that is uncertain in its values, quality, provenance, and even 

in its structure [15,20]. Researchers have experimented with 

a number of different visualizations of uncertainty, 

including error bars, translucency and fuzzy regions [8,18]. 

However, several evaluations [14,20,21] have found that 

more exotic schemes can be difficult for users to interpret. 

The most applicable approach from this work is 

‘statistically uncertain visualization.’ Both Olston and 

Mackinlay [11] and Sanyal et al [14] refer specifically to 

uncertain data values that have known properties, such as 

bounds or probability ranges. In an original CONTROL 

paper [4], the authors suggest both a bar chart with error 

bars, and a “cloud” plot to represent multidimensional data. 

We leverage these past approaches by representing 

confidence intervals as error bars: both confidence intervals 

and error bars refer to an expected range of values, and 

error bars are familiar representations in statistics.  

METHOD 

The purpose of the work we present here has been to 

understand whether data-intensive users would be willing to 

make decisions on the fly using incremental visualizations 

in order to engage in exploratory data analysis. We wanted 

to understand whether they found the concept of dealing 

with confidence bounds confusing, and at what point a 

visualization’s bounds are “good enough” to act upon. We 

also wanted to understand whether providing an interactive 

exploratory front-end encouraged them to learn about their 

datasets in new ways. 

Our hypothesis is that users working with incremental 

visualizations will be able to interpret the confidence 

intervals comfortably. We further hypothesize that this will 

allow them to act rapidly on their queries. Last, we 

hypothesize that incremental results will allow users to 

carry out exploratory queries. 

Experimentation 

To interrogate our hypotheses, we do not need to implement 

an incremental database system at full scale. Rather, we 

need to produce a realistic experience that allows users to 

understand what using an incremental database would be 

like. The system must, of course, incrementally update 

samples, showing ever-larger portions of the dataset and the 

estimates that emerge from them. In order to maintain 

ecological validity, the system should work with data that is 

familiar to the analyst, and should allow the analyst to 

experiment with a broad assortment of queries.  

To that end, we have created a tool that allows us to 

simulate the experience of using a very large dataset. 

Analysts provide us with a table of data. In turn, we enable 

the analysts to execute a variety of queries, while 

incrementally displaying results based on ever-larger 

portions of the dataset. This allows users to work with their 

own data while exploring our interface. We called this 

system sampleAction. sampleAction allows a user to 

formulate a query visually. The system responds with a 

partial result, displaying a bar chart with confidence 

bounds; as the analyst waits, the system increases its sample 

size, narrowing the confidence intervals and producing 

more precise results (Figure 1). 

sampleAction uses estimators that produce error bounds to 

predict the final values; these estimators base their results 

on the size of the sample, rather than the size of the 

database, and so can scale up with the data. 

System Implementation 

In the following sections we first describe the front end 

interaction that drives the queries and represents the 

incremental responses. We next describe the statistical 

reasoning used to present the confidence in the samples 

presented and close this section with the description of the 

database implementation supporting the simulation.   

Interface for Formulating Queries 

The front-end interface of sampleAction allows users to 

execute basic aggregate queries (averages, sums, counting) 

typically used in exploratory data analysis, in an 

environment that resembles analytics tools like Tableau. 

The user can connect to arbitrary database tables, and, 

without any knowledge of the underlying query language, 

use the graphical user interface to create visual summaries 

of database queries with filters, sorting, and groups.  

An initial screen allows users to connect to an SQL server, 

select a table from that database and open a dashboard over 

which analytics over the data in the table can be performed. 

The major screen in sampleAction is the Analytics panel 

(Figure 1), which allows users to compose aggregate 

queries over the data table. An analyst can drop one or more 

dimensions onto the column box, and a measure onto the 



rows box (Figure 1-1). The “filter” box allows an analyst to 

create a filter on either a dimension or measures. In Figure 

1, for example, the analyst performs a query over an FAA 

(US Federal Aviation Administration) database of flight 

delays, showing the average arrival delay by day of the 

week. 

Visualization of Queries 

When a query is issued, the system sends it to the back-end, 

which computes and returns an estimate and confidence 

bounds; the front-end displays a chart of the results. The 

estimate and bounds are updated every second with more 

rows of data.  

sampleAction displays all aggregates with a column chart. 

We chose column charts for their familiarity and versatility. 

The column charts is annotated with error bars (Figure 1) 

which are shown around each column. The error bars show 

the confidence bounds around the resulting data value. The 

error bars show the range of values that may occur at the 

confidence levels, while column height itself shows the 

current estimated value. For example, in Figure 1, an 

analyst can conclude that—with 90% probability—the true 

average delay on Friday  (day=5) is somewhere between 6 

and 12 minutes, while on Saturday is between 2 and 8 

minutes. These conclusions are drawn by looking at 56000 

rows, just 0.32% of the full database. 

sampleAction uses error bars to show the values of the 

estimate. However, there are new parameters that are not 

common in standard exploratory data visualization systems, 

which sampleAction is able to show (Figure 1). The display 

shows the number of rows of data examined so far, and how 

much of the total dataset this represents. A tooltip (Figure 

1-2) allows the user to know the number of datapoints that 

were used to compute a given estimate. Last, sampleAction 

shows how the bounds are changing over time (Figure 2); 

this can help an analyst decide how much longer it is worth 

waiting for more data.  

An analyst can pause or stop the incremental process at any 

time; in the current implementation, analysts can also start 

additional queries while the previous ones are still running. 

Figure 1. The Analytics panel in sampleAction showing an incremental visualization in progress. The analyst is looking at flight delays 

by day of week. (1) Selecting columns to be shown in (2) the visualization. Dark blue bars show current estimates; pale blue dots show 

the expected range of values. This prototype interface includes multiple selectable bounding algorithms. (3) A progress indicator 

showing that 0.32% of the database has been seen so far.  



All queries will continue to add samples and slowly 

converge. 

Bounded uncertainty based on samples 

The back-end of sampleAction computes responses based 

on queries from the front-end. In order to supply the 

information in the UI, the responses that it sends back are 

somewhat more complex than standard SQL query result 

sets: in addition to returning a set of values, queries also 

return confidence bounds and the number of rows seen. 

The choice of appropriate bounds is at the heart of the 

sampleAction system. Bounds should appropriately bound 

the data—that is, they need to represent the highest and 

lowest likely values of the true value. If the bounds are too 

wide, users will gain little information about the estimate. If 

bounds converge too slowly, incremental visualization will 

be little better than waiting overnight for a precise value. 

Computing statistically accurate bounds requires random 

samples from the dataset in order to ensure that the sample 

is unbiased. As a result, incremental results need to be 

selected from a randomly-ordered stream. The efficient 

computation of random samples from a database is a well-

known problem (Olken and Rotem [10] survey techniques 

from 1990). This sampling can be accomplished by 

selecting randomly from the table, which is computationally 

expensive. Alternately, we can randomly order the 

database, which potentially interferes with index structures 

or requires a redundant copy of the data. These tradeoffs are 

active areas of research in the database community. For the 

goals of this project, we randomly ordered the dataset. 

Given its stream of samples, sampleAction computes an 

estimate of the expected value of an aggregate of the 

stream. The tool uses the rows processed so far in order to 

make an estimate of the value based on the full dataset, as 

illustrated in Figure 3. For the purposes of estimating a 

value, we treat each category of a group-by query as 

separate. For example, if we are querying for total sales, 

grouped by state, then sampleAction will estimate fifty 

different values. The tool attempts to estimate the true value 

of all rows that match the query (Figure 3-2); however, it 

has only seen a subset of rows (Figure 3-4). The estimate is 

based therefore on those rows which it has seen already and 

that match the query (Figure 3-3), which can be a much 

smaller subset. In a fixed-size sample, this fraction could 

mean that the estimated values might be very inaccurate; in 

an incremental system, it means that the user interested in a 

rare phenomenon can choose to wait for more samples. 

For a tool like sampleAction to work against very large 

datasets we want the formula that provides the confidence 

bounds to be scalable. In particular, even for very large 

databases (that is, where (Figure 3-1) is large), we would 

not want that size to generate very broad confidence 

bounds. We also want an estimator in which the confidence 

bounds narrow monotonically as the sample size increases: 

as the number of rows that the stream has processed (Figure 

3-3) grows, we expect the bounds to tighten. 

The computation of appropriate bounds is an active area of 

research in probability theory, and different bounds are 

appropriate under different circumstances. In general, 

though, some estimators gain their strength by using 

additional information from the dataset beyond the sampled 

values. For example, it is common to examine the minimum 

and maximum values in the data column. The pace at which 

bounds shrink is determined by the size and variance of the 

sample: the bounds expand with the variance of the sample, 

and tighten in proportion to the square root of the number 

of samples. As a result, the choice of estimators, combined 

with the distribution in the results can produce very 

different bounds, changing at very different speeds.  

In the sampleAction protoype, we computed several 

different sets of bounds in order to learn about their 

Figure 2. Convergence of confidence bounds for a given column as the database reads in more columns based on two 

different formulae. We experimented with different bounds in order to better understand convergence behavior. 



convergence properties. These bounds are displayed in the 

captions of Figures 1 and 2, and were selectable by the user. 

We do not expect that this variety of bounds would be 

available, or desirable, in a final product; our user study did 

not emphasize multiple bound types. 

 

Figure 3. Schematic view of sampling against filters. A 

restrictive query, joined with a small sample, can make for a 

very small set of rows to inform estimates. 

The Back-End Database 

Industrial database management systems do not currently 

support incremental queries of the type required to test our 

hypotheses. Therefore, we constrained this initial evaluation 

to deploying sampleAction on a database small enough to 

query interactively: sampleAction takes samples from a 

database with several millions of records. We used a 

standard SQL database system to store the data. While these 

datasets are still relatively small in comparison with “big 

data” systems, they are nevertheless sufficiently large for 

our purposes: it is possible to extract samples, run aggregate 

statistics, and compute probability bounds over them. These 

smaller databases have the virtue that they are easy to query 

and return rapid results. Therefore, sampleAction is able to 

interactively run complete queries over the entire dataset, 

collect metadata, and compare estimates with ground truth 

results.  

sampleAction stores data in its back-end SQL database in a 

randomized order. Putting the data in random order allows 

sampleAction to perform collection of random samples, 

merely by querying for the first few thousand rows. To 

simulate incremental results, we simply executed repeated 

queries of increasing size. For example, the first initial 

query requests results based on the first 5000 records; the 

second query based on the top 10000, and so on. Each of 

these queries could be resolved quickly and returned to the 

user. This scheme allows us to prototype the effects of an 

incremental query against a randomized dataset.  

We note that because the queries for different groups are 

drawn from the same sample, the estimates are not fully 

independent. For the experiments we conducted, we found 

the sample sizes were typically large enough for these 

effects to be negligible. 

We note that our sample is far from using SQL to its 

capacity: we would expect that in a production system, 

users might see updates of millions of rows at a time. 

USER STUDY 

To evaluate the effectiveness of our technique, we recruited 

three sets of experts who analyze data on a regular basis. 

All three work for a large, data-intensive corporation. We 

selected three very different groups of analysts, with very 

different types of data to see how they would respond to 

incremental visualization in their work. One team runs 

system operations on a large network, looking for network 

and server errors. The second team is part of a marketing 

organization looking at the marketing and use of network-

connected games. The third participant is a researcher, 

studying social behavior on Twitter. 

To create a familiar, real-world data experience with 

sampleAction, we collected sample data from each of the 

expert teams; they provided us with recent selections of 

their datasets. We asked them to provide us around a 

million rows of data in order to have a reasonably large 

dataset. We wished to ensure that the session asked real 

questions that the analysts might have encountered. 

Therefore, in preparation for the session, we asked them to 

recall a recent data exploration session, or to think of the 

sorts of questions that they frequently ask of their data. 

Because of the iterative query services facilitated by our 

interface, we expected our sessions to diverge from their 

usual queries, but this structure allowed us to start from a 

familiar place. 

After introducing the system to the teams, we had the 

experts reconstruct the questions that they had encountered 

in the past. During this series, we asked them to think aloud 

through the charts they were seeing on screen, and asked 

them to describe points at which they would be able to 

make a decision. Periodically, we paused computation to 

ask them about how they would interpret the interrupted 

session. While the session with the Twitter researcher took 

place in person, the other sessions were carried out by 

remote conversation with a shared desktop session running 

the application. Voice and screen interactions for all 

sessions were recorded. 

Bob: Server Operations 

Bob is on a team that manages operations for a handful of 

servers. Their group has a logging infrastructure that is 

periodically uploaded into an SQL server; nightly, the 

server’s results are produced into a static report, generated 

by Microsoft SQL Reporting Services. Bob’s team both 

monitors the performance of a set of servers, and diagnoses 

error conditions that may occur. The report is not 

interactive; as a result, the team has created an interactive 

custom application that shows some results that the report 

cannot. However, they complain that the custom application 

has a very limited set of queries.  



Bob was able to provide 200,000 rows in each of two 

tables: one that was oriented around error conditions; the 

other around successful interactions. Bob’s dataset is fairly 

uniform: the back-end server behaves reliably, and the 

range of data is small. Therefore, he was able to get rapid 

and accurate estimates, and the confidence intervals 

converged very rapidly. 

Bob started off by looking at number of errors divided by 

datacenter. After seeing the first set of results, he realized 

that the errors he was investigating were all in one 

datacenter: “Ok, we’ll stop that, and we’ll change over to 

the right variable this time.” 

 

Figure 4. Consistent error behavior across three servers of one 

type, and two other servers of another. 

After changing to a display by server, he let it run for a 

moment (Figure 4). “What we’re not seeing is any 

particular outliers. What this is telling me is that all the 

machines are performing about the same. The errors are 

high, but consistent. The pile of errors we’re seeing is a 

site-wide issue, not a machine issue.” 

He then wished to drill down into the types of errors. He 

filtered down to just two servers and added the error type as 

a measure along the X axis. In these machines, most records 

were of the same error type. A very small number of rows 

were of other error types; these other types had few 

samples, and so displayed very wide confidence intervals. 

Bob was interested in incremental visualization as an 

alternative to their current, index-heavy implementation of 

data management. As his team has attempted to scale 

upward, they have spent a great deal of effort optimizing 

their data, queries, and indices to be able to diagnose errors 

within a few minutes of their occurring. Finding these rare 

errors will not be helped by sample-based methods: 

sampling cannot find outliers.  

Bob’s team currently archives all data after a day in order to 

focus on new data—and infrequently carries out the costly 

queries that would be required to access their archive. He 

felt that incremental systems might help them explore their 

archives, understanding how system performance is 

gradually changing over time. 

Allan: Online Game Reporting 

Allan is in charge of maintaining the database reporting 

system for a large online gaming system. The core database 

records every session by every player logged into the 

system, as well as their purchasing history. Allan is 

regularly asked to prepare tremendously varying reports for 

a variety of stakeholders, ranging from marketing teams as 

well as game designers. In order to present these reports, 

Allan often creates an OLAP cube which summarizes 

relevant answers. Allan, therefore, is accustomed to having 

to clearly specify queries and is unused to exploring his 

data. 

Allan suggested that we examine player session 

information. The player session table has the locations of 

players (on a national level), statistics about the players 

(such as their age), and which games they played on any 

given day. Allan provided two billion player records. 

Allan had recently run an interesting statistic: the average 

age of a game player on the system. He began by looking at 

the sum of ages. After a moment, he realized that he wanted 

to see the average age, and stopped the query in order to 

correct it and issue a new one. Reassured that the data was 

showing the same result he had seen before, he terminated 

the query after a few seconds (looking at just thirty 

thousand rows) and began to explore new queries.  

He looked at average age by country, before deciding that 

the many categories caused the error values to converge too 

slowly; cancelled the query, and instead looked at average 

age by region. For some regions where there are fairly few 

players, the system found few examples, and so generated 

very broad confidence intervals for those regions. Other 

regions, such as the United States and the UK, had very 

precise error bars due to the high number of players. In the 

current sampleAction implementation, the scale broadened 

to show the large confidence intervals which swamped the 

values. Consequently Allan turned off confidence intervals, 

feeling he now knew which columns he could trust. 

He then wanted to see whether sports games have a 

different distribution then war games. He added a filter to 

the previous query, specifying only war games, and started 

it. He changed the filter again, and started another query, 

specifying only sports games. He scrolled back and forth, 

comparing the results to each other. A few moments later, 

he added another query, comparing the numbers of war-

gamers to sports players by region.  

Allan, accustomed to running reports, had not been able to 

explore his dataset before; he enjoyed exploring the dataset 

in ways that had not been accessible to him before. 

Sam: Twitter Analytics 

Sam is analyzing Twitter data to understand relationships 

between the use of vocabulary and sentiment. He works 

with Twitter data that is saved to a high-capacity distributed 

system. New data constantly streams into its ever-growing 

archive, which has stored several years’ worth of data. 



Sam’s queries require several sets of keyword filters, which 

he frequently tunes. Sam provided us with a single day 

worth of data, with annotations labeling which filters would 

have affected which tweets. The result was approximately 

10 million records. 

Sam sometimes uses visualization: “I’ve generated my own 

charts in R, but it’s based on small samples.”  

During Sam’s interview, he created a series of bar charts, 

tweaking variables. He frequently made small errors, 

realizing that he had placed the wrong variable in the query 

or had failed to filter out ‘null’ values. In each of those 

cases, he observed this within the first few iterations, when 

we had seen less than 0.1% of the full dataset. Using his 

usual batch tools, he would not have caught this error until 

after the computation was done, several hours later.  

In using sampleAction, Sam moved rapidly from query to 

query, exploring and testing different variations. Once, for 

example, he wanted to compare the relative frequency of 

keywords having to deal with emotions. When he generated 

the column chart, he was able to stop the iteration after 

150,000 samples (about 30 seconds) and explore it. By the 

time he was at that phase, the differences were vivid. For 

this keyword, at least, the error margins were tight: “I didn’t 

actually know before that ‘hate’ was so dominant.”  

He was aware of the limitations of looking at a sample: “the 

statistician in me is saying, I want to let this run a little 

longer before I make a total judgment call on these two 

sets.” Nonetheless, the partial result was enough for him to 

continue to explore. 

He decided to figure out why the keyword was so large. To 

do so, he needed to compare the word list under two 

different conditions. He created two filters—one for each 

condition—and started two queries. He compared the two 

runs to each other: “See how much bigger ‘angry’ was in 

the other one? These are hugely different.” 

Because his X axis had so many different keywords, some 

of which were rare, the results were distributed across a 

very large confidence interval. As happened for Allan, this 

large confidence interval distorted the scale on the rest of 

the image. He found the distortion to be too large to 

interpret the chart, and often distracting; he would turn 

them off to examine the values, then turn them back on to 

check how confident he could be in any value. 

ANALYSIS 

In this section, we collect some of the major insights from 

the three different user studies. 

The value of seeing a first record fast 

In all three studies, users found value in getting a quick 

response to their queries. Sam and Allan realized they had 

entered an incorrect query, and were able to repair it 

quickly by adding appropriate filters. Ordinarily, 

discovering and repairing these errors would have been a 

costly, even overnight process. Allan also realized that his 

X axis would be wider than he wanted, and changed his 

query to narrow his results. Bob’s data was uniform enough 

that even the first view had a good confidence interval, and 

so he was able to draw conclusions from it. 

New Behaviors around Data 

All three of our analysts were accustomed to seeing their 

data in a static, non-interactive form: they formulate a query 

(or cube), wait a period of time, and can explore the results. 

Most visibly with Sam, the opportunity to interact with the 

data without waiting was freeing: it changed the sorts of 

queries that he was able to make, as well as the results of 

those queries. Allan was excited to have the opportunity to 

ask new questions of his dataset without delay. 

We observed real exploration of the dataset using our 

system. Sam was able to play with a hypothesis that he had 

not previously explored, in part because it required several 

different permutations of his query in order to find the 

interesting result. Allan was able to try a handful of 

different variations, exploring questions in depth. Bob was 

able to clean his queries on the fly, removing special cases 

and exploring the types of results returned. None of these 

were possible in the non-interactive case. 

At the same time, the incremental aspects were helpful to 

the analysts. If the first few samples had not converged, 

they would decide whether it was worth the trade-off of 

waiting longer, sometimes checking the convergence view 

(Figure 2) to decide. In cases where the system seemed 

unlikely to converge, they would decide which columns of 

data to regard. 

Difficulties with Error Bar Convergence 

We did not anticipate the tremendous variance in 

confidence interval sizes. While Bob never saw a 

confidence interval much larger than his largest data point, 

Allan often could not see his data without hiding the 

confidence intervals. Past literature on visualizing 

uncertainty [11] has emphasized visualizations that fit the 

entire uncertainty range on screen; these were not sufficient 

for some of these preliminary bounds. It would be 

worthwhile investigating visualizations that can show the 

size of the interval even past screen borders. 

In Allan’s sample, some data points had noisy values: for 

example, the minimum ‘age’ listed was -100, while the 

oldest was 284. This threw off the “minimum” and 

“maximum” values; as the computation we used included 

these values, the bounds converged slowly. Incremental 

systems can be slowed by datasets that are not clean. Using 

additional domain knowledge during the execution—such 

as discarding values that fall outside meaningful 

constraints—would improve convergence, and would show 

more meaningful results.  

Non-Expert Views of Confidence Intervals 

While error bars are familiar indications of confidence, 

some of the users found them confusing. It was not initially 



obvious to Allan, for example, that the interval would 

shrink toward a converged value.  

The confidence interval is a complex indicator: it carries 

information about both the number of samples seen so far, 

and the variance of a column. As a result, two very different 

adjacent columns might have identical confidence intervals: 

one has a small variance but is fairly rare in the database; 

the one next to it is common, but has a high variance. 

Helping users distinguish these would be useful. 

In all three cases, users had data that was unevenly 

distributed across the X-axis, with some categories having a 

great many entries, and others having very few. For 

example, in Allan’s situation, countries with few players 

converged very slowly, causing estimates to be very large. 

Sam and Allan were able to adapt to the error bars, 

regarding the numbers that converged faster as more certain 

than the ones that took longer. 

Implications 

Our work shows both that users seem to be able to interpret 

confidence intervals, and that this finding opens 

opportunities for using uncertainty visualization tied to 

probabilistic datasets. Creating sampleAction has allowed 

us to have a concrete feel for the experience of watching 

bounds shrink at different rates, which in turn is 

illuminating for visualization design of confidence 

intervals. 

The major step that stands between simulators like 

sampleAction and true interactive techniques are limitations 

to databases. Currently, Big Data systems do not support 

the callbacks or partial results that would allow incremental 

results to be computed. Similarly, SQL tables allow 

sampling, but do not allow the user to progressively 

increase the size of their sample. Allowing these is a 

necessary back-end for future interactions. 

Limitations of Incremental Visualization 

sampleAction has helped us interpret how users interact 

with incomplete and incremental data. Even in a complete 

incremental system, however, there some genres of queries 

that are structurally going to be difficult. These are not 

limitations of our prototype, but are fundamental to the 

approach. 

Outlier Values 

This system only works for meaningful, aggregate queries. 

Thus, operations that depend on single items, such as 

outlier queries, cannot be supported. There is no 

probabilistic answer to “which item has the highest value”. 

However, there might be ways to rephrase queries: for 

example, it might be possible to use order statistics in this 

context. 

Table Joins 

Joins are an important part of database interaction; past 

database projects like CONTROL [4] and others [6] have 

looked at the statistical and technical issues involved in 

incremental joins. As with outliers, some types of joins can 

be very difficult for incremental sampling techniques; in 

some cases, such as joins against a rare or unique key, using 

samples from joining tables may not work at all. 

Future Work 

The experience of exposing users to incremental queries 

and approximate visualizations motivates several lines of 

future work. First, it has highlighted the importance of 

exploring representations of confidence. While error bars 

are conventional, they are not necessarily easily 

comprehensible. In addition, they can only highlight one 

probability value at a time. The downsides of error bars, 

such as the difficulties they raise with scaling, argue that 

there could be an opportunity to find new ways to represent 

confidence intervals. 

Our users also asked for more types of visualizations: 

clustered bar charts showing more than one measure; a line 

chart; and two-dimensional histograms. Each of these 

visualizations will raise new issues in presenting confidence 

intervals. It is worthwhile to explore new visualizations in 

order to enable rapid refinement for these more 

sophisticated query types. 

Last, we would like to explore more types of data analysis, 

such as machine learning techniques. We believe that 

applying incremental techniques to a broad range of 

algorithms might help users anticipate their algorithm’s 

progress before it comes out with its final result. 

Conclusions 

While the concept of approximate queries has been known 

for some time, the visualization implications have not been 

explored with users. In particular, it has been an open 

question whether data analysts would be comfortable 

interacting with confidence intervals. We hope that showing 

the utility of these approximations will encourage further 

research on both the front- and back-ends of these systems. 

HCI researchers have also been limited in their ability to 

explore these concepts; our model for simulating large data 

systems may help them explore realistic front-ends without 

needing to build full-scale computation back-ends. 

We have shown that it is both tractable and desirable to 

support incremental query interactions for data analysts. 

With such mechanisms in place, analysts can take 

advantage of the immediate feedback afforded by 

incremental queries by rapidly refining their queries, and 

more importantly, exploring new avenues which they would 

not have done before.  

Our approach has validated the concept of incremental 

queries. We have shown that it is possible to use interaction 

strategies that analysts have desired, but not been able to 

pursue given the time required to complete queries of large 

scale databases. As our interviews show, even relatively 

simple representations of uncertainty using error bars 

progressively updating over time, allowed analysts to trust 



their decision points, potentially saving days or weeks of 

effort, and exploring unimagined routes through their data 

for new discoveries and insights. 
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