
Dremel:
Interactive Analysis of Web-
Scale Datasets
S E R G E Y M E L N I K , A N D R E Y G U B A R E V, J I N G J I N G L O N G , G E O F F R E Y R O M E R , S H I V A S H I V A K U M A R , M AT T T O LT O N ,T H E O V A S S I L A K I S

P R E S E N T E D B Y

D I PA N N I TA D E Y

Outline
• Problem

• Existing technology

• Dremel

• Basic features

• Applications

• Infrastructure & details

• Experiments

• Evaluations

2

Problem: Latency Matters

3

Spam
Trends

Detection

Real-time Web
Dashboards

Network
Optimization

Interactive
Tools

Existing Technologies
• Map-Reduce

- Record-oriented data

- Does not work with data in-situ

- Suitable for batch-processing

• Pig

• Hive

4

Inherent Latency between
submitting query and getting
result

Dremel
• Interactive ad-hoc query system

• Scales to thousands of nodes

• Fault tolerant and handles stragglers

• SQL like query language and multi-level execution trees

• Nested data model
• Columnar storage of nested (non-relational) data

• Tree like architecture similar to web search

• Interoperability with data
• Access data in situ (Eg. – GFS, Bigtable)

• MapReduce Pipelines

5

Widely used inside Google since 2010
• Analysis of crawled web documents

• Tracking install data for applications on Android Market

• Crash reporting for Google products

• Spam analysis

• Debugging of map tiles on Google Maps

• Tablet migrations in managed Bigtable instances

• Results of tests run on Google's distributed build system

• Disk I/O statistics for hundreds of thousands of disks

• Resource monitoring for jobs run in Google's data centers

6

Columnar data storage format

7

Advantage: Read less, fast access, lossless representation

Challenge: preserve structure, reconstruct from a subset of fields

Nested data model

8

message Document {

required int64 DocId; [1,1]

optional group Links {

repeated int64 Backward; [0,*]

repeated int64 Forward;

}

repeated group Name {

repeated group Language {

required string Code;

optional string Country; [0,1]

}

optional string Url;

}

}

DocId: 10

Links

Forward: 20

Forward: 40

Forward: 60

Name

Language

Code: 'en-us'

Country: 'us'

Language

Code: 'en'

Url: 'http://A'

Name

Url: 'http://B'

Name

Language

Code: 'en-gb'

Country: 'gb'

DocId: 20

Links

Backward: 10

Backward: 30

Forward: 80

Name

Url: 'http://C'

Repetition and definition levels

9

DocId: 10

Links

Forward: 20

Forward: 40

Forward: 60

Name

Language

Code: 'en-us'

Country: 'us'

Language

Code: 'en'

Url: 'http://A'

Name

Url: 'http://B'

Name

Language

Code: 'en-gb'

Country: 'gb'

r1 DocId: 20

Links

Backward: 10

Backward: 30

Forward: 80

Name

Url: 'http://C'

r2

value r d

en-us 0 2

en 2 2

NULL 1 1

en-gb 1 2

NULL 0 1

Name.Language.Code

r: At what repeated field in the field's path

the value has repeated

d: How many fields in paths that could be

undefined (opt. or rep.) are actually present

r=2r=1 (non-repeating)

Column-striped representation

10

value r d

10 0 0

20 0 0

DocId

value r d

http://A 0 2

http://B 1 2

NULL 1 1

http://C 0 2

Name.Url

value r d

en-us 0 2

en 2 2

NULL 1 1

en-gb 1 2

NULL 0 1

Name.Language.Code Name.Language.Country

Links.BackwardLinks.Forward

value r d

us 0 3

NULL 2 2

NULL 1 1

gb 1 3

NULL 0 1

value r d

20 0 2

40 1 2

60 1 2

80 0 2

value r d

NULL 0 1

10 0 2

30 1 2

Record assembly FSM

11

Name.Language.CountryName.Language.Code

Links.Backward Links.Forward

Name.Ur

l

DocId

1

0

1

0

0,1,2

2

0,11

0

0

For record-oriented data processing (e.g., MapReduce)

Transitions

labeled with

repetition levels

SQL dialect for nested data

Id: 10

Name

Cnt: 2

Language

Str: 'http://A,en-us'

Str: 'http://A,en'

Name

Cnt: 0

t1

SELECT DocId AS Id,

COUNT(Name.Language.Code) WITHIN Name AS Cnt,

Name.Url + ',' + Name.Language.Code AS Str

FROM t

WHERE REGEXP(Name.Url, '^http') AND DocId < 20;

message QueryResult {

required int64 Id;

repeated group Name {

optional uint64 Cnt;

repeated group Language {

optional string Str;

}

}

}

12

Output table
Output schema

No record assembly during query processing

Serving tree

storage layer (e.g., GFS)

. . .

. . .

. . .leaf servers

(with local

storage)

intermediate

servers

root server
client

13

• Parallelizes scheduling and
aggregation

• Fault tolerance

• Stragglers

• Designed for "small" results
(<1M records)

histogram of
response times

Example: count()
SELECT A, COUNT(B) FROM T

GROUP BY A

T = {/gfs/1, /gfs/2, …, /gfs/100000}

SELECT A, SUM(c)

FROM (R11 UNION ALL R110)

GROUP BY A

SELECT A, COUNT(B) AS c

FROM T11 GROUP BY A

T11 = {/gfs/1, …, /gfs/10000}

SELECT A, COUNT(B) AS c

FROM T12 GROUP BY A

T12 = {/gfs/10001, …, /gfs/20000}

SELECT A, COUNT(B) AS c

FROM T31 GROUP BY A

T31 = {/gfs/1}

. . .

0

1

3

14

R11 R12

Data access ops

. . .

. . .

Experiments

Table

name

Number of

records

Size (unrepl.,

compressed)

Number

of fields

Data

center

Repl.

factor

T1 85 billion 87 TB 270 A 3×

T2 24 billion 13 TB 530 A 3×

T3 4 billion 70 TB 1200 A 3×

T4 1+ trillion 105 TB 50 B 3×

T5 1+ trillion 20 TB 30 B 2×

15

• 1 PB of real data
(uncompressed, non-replicated)

• 100K-800K tablets per table

• Experiments run during business hours

Read from disk

columns
records

objects

fr
o

m
 r

e
c
o

rd
s

fr
o

m
 c

o
lu

m
n

s

(a) read +
decompress

(b) assemble
records

(c) parse as
C++ objects

(d) read +
decompress

(e) parse as
C++ objects

time (sec)

number of fields

Table partition: 375 MB (compressed), 300K rows, 125 columns

16

MR and Dremel execution

execution time (sec) on 3000 nodes

17

SELECT SUM(count_words(txtField)) / COUNT(*)

FROM T1

Q1:

87 TB 0.5 TB 0.5 TB

MR overheads: launch jobs, schedule 0.5M tasks, assemble records

Avg # of terms in specific field in table T1

Impact of serving tree depth
execution time (sec)

18

SELECT country,

SUM(item.amount)

FROM T2

GROUP BY country

SELECT domain,

SUM(item.amount

) FROM T2

WHERE domain

CONTAINS ’.net’

GROUP BY domain

Q2:

Q3:

(returns 100s of records) (returns 1M records)

Scalability
execution time (sec)

number of

leaf servers

19

SELECT TOP(aids, 20), COUNT(*) FROM T4

Q5 on a trillion-row table T4:

Interactive speed

execution

time (sec)

percentage of queries

20

Most queries complete under 10 sec

Monthly query workload

of one 3000-node

Dremel instance

Outcome
• Google Big-Query

- Web Service (pay-per-query)

• Apache Drill

- Open source Implementation of BigQuery

21

BigQuery

Take Away
• Map-Reduce can benefit from columnar storage like a parallel DBMS

- Record assembly is expensive

- Dremel complements MR and together produces best results

• Parallel DBMS can benefit from serving tree architecture

22

23

Thank You

