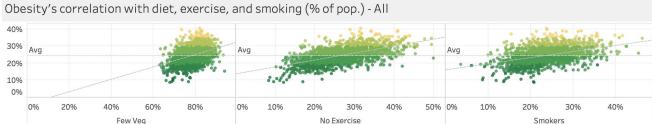

Polaris: A System for Query, Analysis, and Visualization of Multidimensional Relational Databases


Chi-Hsien (Eric) Yen, Oct. 23

Is Your County Obese?

Select your county to see how it compares with other counties in the country

Timeline

- 2002: Polaris paper published (Chris Stolte, Diane Tang, and Pat Hanrahan)
- 2003: Tableau Founded (Chris Stolte, Pat Hanrahan, and Christian Chabot)
- 2013: IPO launched (\$250M)
- 2016: Full year revenue is \$826.9M
- Now: A worldwide company with 80+ offices and 3000+ employees

Interesting to see a research project turned into a global company in 15 years!

Motivation

- Allow analysts to rapidly specify and change visualizations to explore large multidimensional databases
 - Easier to find trends, patterns, outliers, etc. in visualizations
 - Hypothesis testing and experimenting
 - Communicate insights and knowledge

Main Contributions

- A unified way to specify visualizations
 - Table Algebra
 - Type of Graphics
 - Visual Properties
- An intuitive interface with useful features

- Specify the x, y, z axes of the table using the fields
 - X: columns
 - Y: rows
 - Z: layers
- Actual graph depends on types of fields

- Types of data:
 - Ratio (quantitative)
 - Interval
 - Ordinal
 - Nominal

- Types of data:
 - Ratio (quantitative)
 - Interval -> quantitative
 - Ordinal
 - Nominal -> ordinal

Q: Is there any issue?

<-> measure

<-> dimension

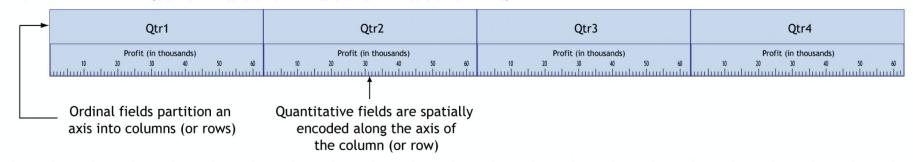
- Operands: fields
 - Quarter (O), Product (O), Profit (Q), Sales (Q)
- Operators:
 - Concatenation (+)
 - Cross (x)
 - Nest (/)

O + O = Quarter + Product = {Qtr1, Qtr2, Qtr3, Qtr4, Coffee, Espresso, Herbal Tea, Tea}:

	Qtr1	Qtr2	Qtr3	Qtr4	Coffee	Espresso	Herbal Tea	Tea
- 1								

O×O = Quarter x Product = {(Qtr1,Coffee), (Qtr1,Espresso), (Qtr1,Herbal Tea), (Qtr1, Tea), (Qtr2, Coffee) ... (Qtr4, Tea)}:

	Qtr	·1			Q	Qtr2		Q	Qtr3			Qtr4			
Coffee	Espresso	Herbal Tea	Tea												

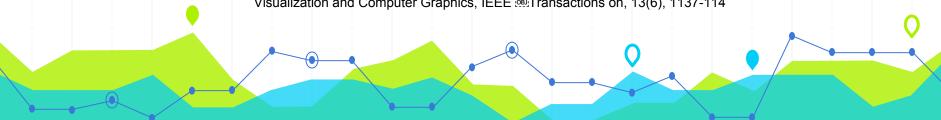

 $O/O = Quarter / Month = {(Qtr1, Jan), (Qtr1, Feb), (Qtr1, Mar), (Qtr2, Apr), (Qtr2, May) ... (Qtr4, Dec)}$:

Qtr1		Qtr2			Qtr3			Qtr4			
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

Q + Q = Profit + Sales = {Profit, Sales}:

Profit (in thousands)							Sales	5			
10	20	30	40	50	60	50	100	150	200	250	300
and the free land	milim	шПпп	duuluu	LuuTuud	THE THE		milim	dimbliand	malana	Limitimi	arritini.

O×Q = Quarter × Profit = {(Qtr1,Profit), (Qtr2, Profit), (Qtr3, Profit), (Qtr4, Profit)}:



Visualization Specification - Graphics

- Depends on types of fields
 - Ordinal Ordinal
 - Ordinal Quantitative
 - Quantitative Quantitative

Follow-up Research Paper: automatic presentation*

Mackinlay, J. D., Hanrahan, P., & Stolte, C. (2007). **Show me: Automatic presentation for visual manalysis**. Visualization and Computer Graphics, IEEE Transactions on, 13(6), 1137-114

Visualization Specification - Graphics

Automatic rules

Table 1: Automatic marks rules

Pane Ty	pe	Mark Type	View Type
Field	Field		
C	C	Text	Cross-tab
Qd	C	Bar	Bar view
Qd	Cdate	Line	Line view
Qd	Qd	Shape	Scatter plot
Qi	C	Gantt	Gantt view
Qi	Qd	Line	Line view
Qi	Qi	Shape	Scatter plot

Mackinlay, J. D., Hanrahan, P., & Stolte, C. (2007). **Show me: Automatic presentation for visual analysis**. Visualization and Computer Graphics, IEEE **Transactions on**, 13(6), 1137-114

Visualization Specification - Graphics

Text Tables: at least 1 field,

Text tables have the lowest rank because their primary utility is to look up specific values. The higher ranked commands present views that encode data graphically,

which support other tasks such as comparison. Although text tables have a low rank, their condition is easily met. The text table command can handle a large number of fields and will always be available as a default for Show Me Alternatives. Heat maps are a related command that is not ranked.

Aligned Bars: at least 1 Q.

Bars are effective for comparing values because the human visual system is good at comparing bar lengths, particularly when they are aligned. Aligned Bars are a common default when the input includes a quantitative field unless the input also includes a date field or two quantitative fields. However, aligned bars can involve a lot of scrolling when multiple

categorical fields are shown. The next command handles this case.

Stacked Bars: at least 2 C, at least 1 O, rank 3 with at least 3 C

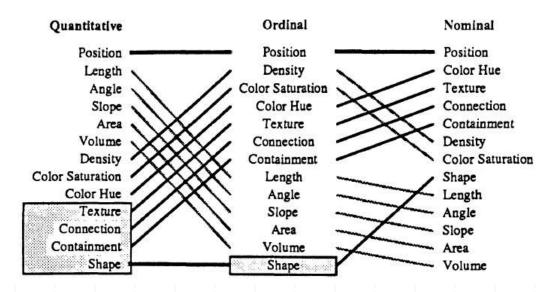
Stacked bars require less scrolling than aligned bars when there are multiple categorical fields in the view. There are two additional bar commands that are not ranked.

Discrete Lines: at least 1 Cdate, at least 1 Q, rank 4

A line view is a better default than a bar view when the input includes a date field because it is more effective for showing trends. This command treats the date field discretely. There is an unranked line command that treats the date

Mackinlay, J. D., Hanrahan, P., & Stolte, C. (2007). Show me: Automatic presentation for visual analysis. Visualization and Computer Graphics, IEEE @Transactions on, 13(6), 1137-114

Visualization Specification - Visual Properties


Encode additional fields into visual properties, such as shape, size, orientation, color, etc.

property	marks	ordinal/nominal mapping	quantitative mapping
shape	glyph	O □ + △ S U	
size	rectangle, circle, glyph, text	• • • •	••••••
orientation	rectangle, line, text	- / / \ \	///////
color	rectangle, circle, line, glyph, y-bar, x-bar, text, gantt bar		min max

Visualization Specification - Visual Properties

Related Works: visual variable accuracy*

Mackinlay, J.D.: Automating the Design of Graphical Presentations of Relational Information,
Computer Science Department, Stanford University, 1986

Interface & Features

- Deriving Additional Fields
 - Aggregation
 - Counting
 - Discrete Partitioning
 - Grouping
 - Threshold aggregation
- Sorting and Filtering
- Brushing and Tooltips
- Undo and Redo

Generating Database Queries

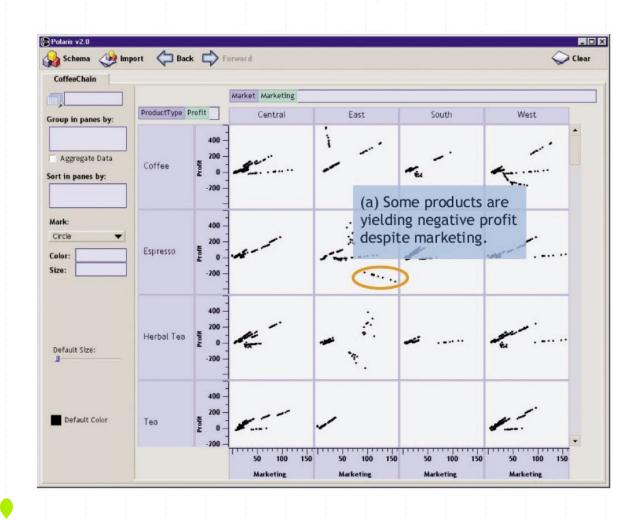
Step1: Select Data

SELECT * WHERE {filters}

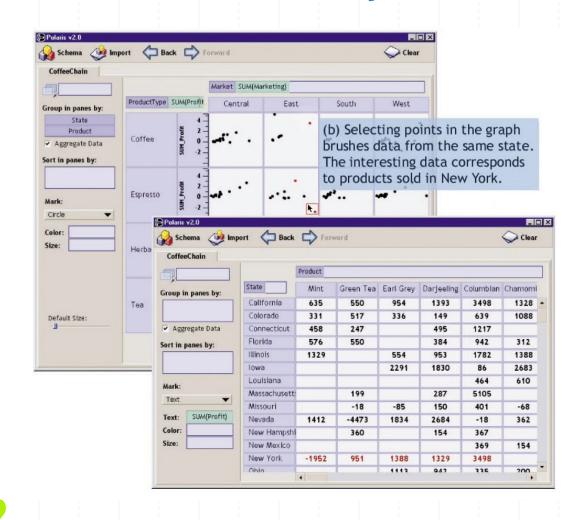
Generating Database Queries

Step2: Partitioning data into panes

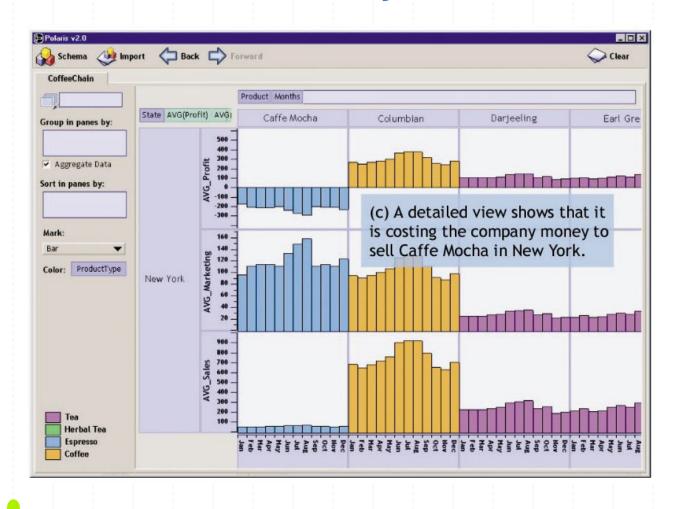
```
For i, j, k:
    SELECT * WHERE {Row(i) and Column(j) and Layer(k)}
```



Generating Database Queries


Step3: Data transformation

```
SELECT {avg(), sum(), count(), etc.}
GROUP BY {groups}
HAVING {filters}
ORDER BY {drawing-order}
```


Evaluation - Financial Analysis of a Coffee Chain

Evaluation - Financial Analysis of a Coffee Chain

Evaluation - Financial Analysis of a Coffee Chain

Limitations?

- No actual performance evaluation or usability tests
- Limited to 2D visualizations
- Does not suggest graph specification (beyond two fields)
- Other ideas?