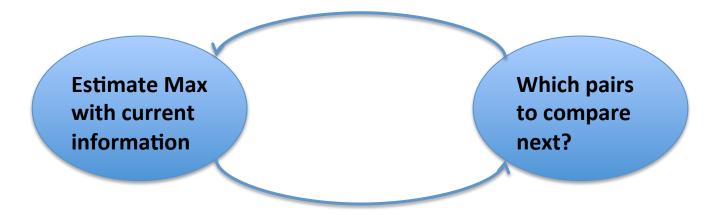

So Who Won: Dynamic Max Discovery with the Crowd

Assma Boughoula

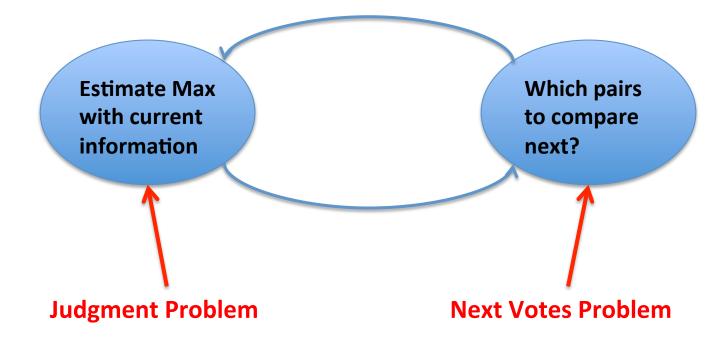
Motivation

Which kitten is **cutest**?

Which dog is **largest**?



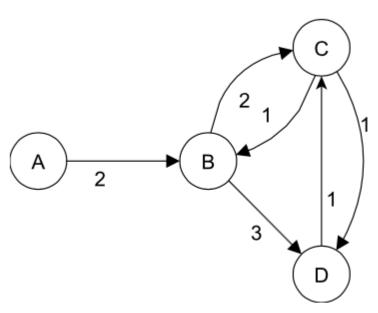
Problem Statement


- Set *O* of *n* objects {*o*₁, ..., *o*_n}
- Each o_i has quality c_i
- π : <u>permutation</u> or <u>ranking</u> of *O*
- If $\pi(i) < \pi(j)$ then o_i is ranked higher than o_j and $c_i > c_j$
- *W* : *n x n* matrix of votes from workers
- Assumptions:
 - $c_i \neq c_j$ for all $i \neq j$
 - Workers can only compare a pair of objects
- Goal: arrive at the correct permutation π quickly and efficiently

Framework

• Two sub-problems

Framework

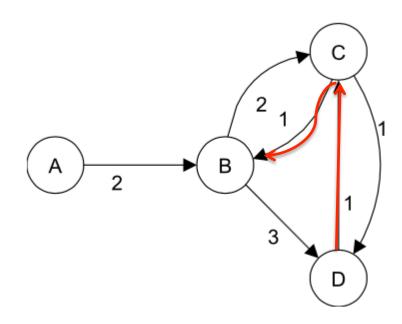


Outline

- Judgment Problem
 - Maximum Likelihood
 (ML) baseline
 - Heuristic Strategies
 - Indegree
 - Local
 - PageRank
 - Iterative

- Next Votes Problem
 - Maximum Likelihood
 (ML) baseline
 - Heuristic VoteSelection Strategies
 - Paired
 - Max
 - Greedy
 - Round Robin

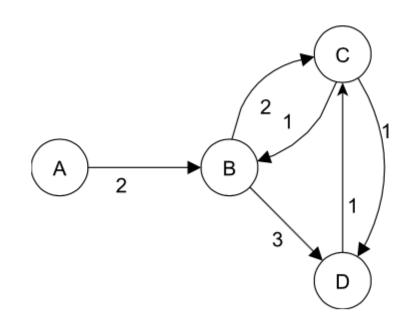
$$W = \begin{pmatrix} A & B & C & D \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 3 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} A \\ B \\ C \\ D \end{pmatrix}$$



Maximum Likelihood

- Average worker accuracy *p* is known
- Calculate $P(\pi_d | W)$ for each permutation π_d
- Choose most probable permutation In example: (D, C, B, A) (C, D, B, A)
- There are *n*! possible permutations!!! Exhaustive, inefficient

Kemeny permutation:


- Minimizes number of edges *i-j* that don't respect ranking.
- (D, C, B, A)

Indegree Strategy

- For each node i, look at all neighbors j:
- Calculate score:
 s(i)= P(i<j |w_{ij},w_{ji})
- Choose max s(i)

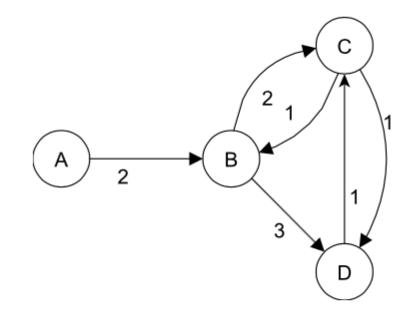
Only considers neighbors, not whole W

Local Strategy

 Considers "neighbors of neighbors"

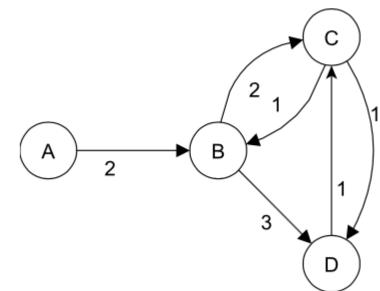
• wins(i) =
$$\Sigma_j w_{ji}$$
 losses(i) =
 $\Sigma_j w_{ij}$
• $s(i) = wins(i) - losses(i) +$
 $\Sigma_{j:ci>cj} wins(j) - \Sigma_{j:ci A 2 B$

Reward

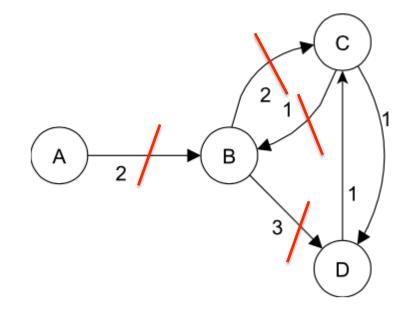

Penalty

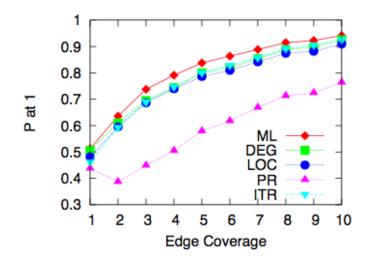
1

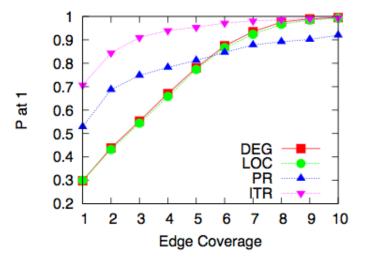
D


PageRank Strategy

- Considers whole graph
- S(i) = PageRank(i)
- Pr_{t+1}(i)
 =Σ_jw_{ji} pr_t(j)/outdeg(j)
- $Pr_0(i) = 1/n$

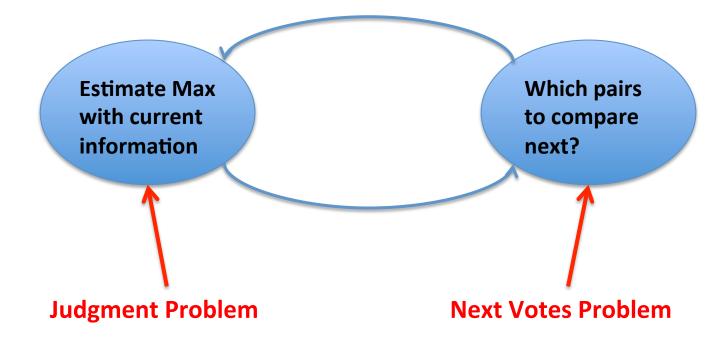

Iterative Strategy


- dif(i) = wins(i) losses(i)
- Eliminate lower half of objects according to *dif(i)* scores
- Repeat with remaining objects



Iterative Strategy

```
Iter1:
    dif(A)=-2, dif(B)=-4,
    dif(C)=1, dif(D)=3
Iter2:
    dif(C)=0, dif(C)=0
```

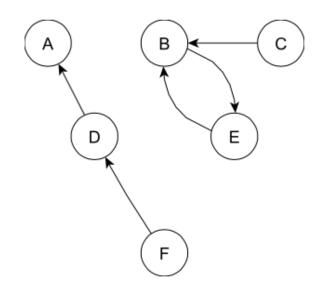



p=0.75

p=0.95

Framework

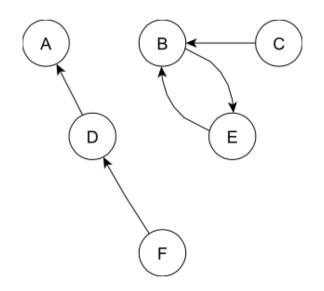
Some Notation...


- Budget *b* = # votes to be requested
- Potential vote {o_i, o_j}
- $Q = \{\{o_i, o_j\}, ...\}$ possible multiset of b votes
- Answer tuple $({o_i, o_j}, o_x)$
- Answer multiset $a = \{(\{o_i, o_j\}, o_x), \dots\}$
- 2^b possible answer multisets for each Q !!!
- $a \wedge W$: updated W matrix

Maximum Likelihood

- Look for Q such that a A W increases our confidence when estimating the max the most.
- Choose Q that maximizes: $\Sigma_a max_i P(i \text{ is } max, a \land W)$
- Assumes average worker accuracy p known

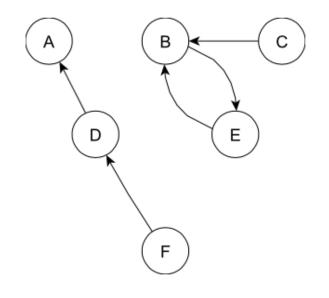
Paired Vote Selection


- Order objects by score s(i) from judgment problem
- **b** = 2
- Q = (A,B), (E,D)
- (Â, B, Ê, D, C, F)

Max Vote Selection

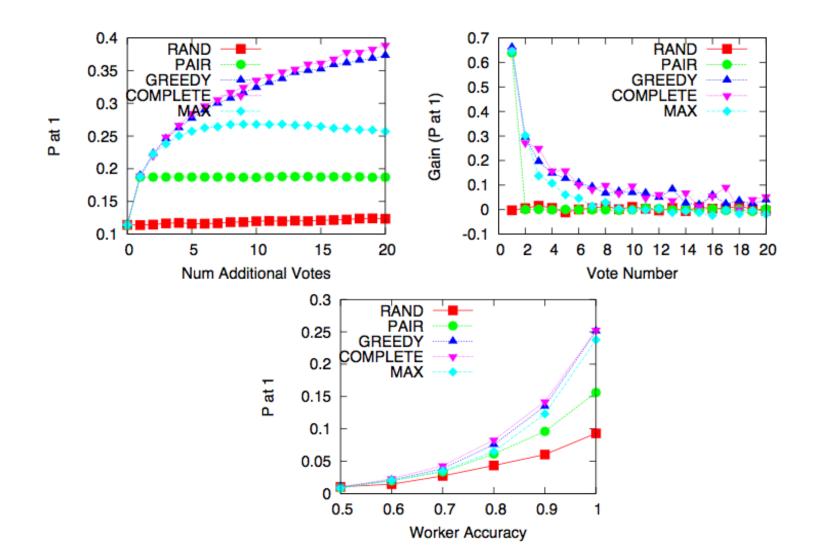
• Compare with current max

b = 2 Q = (A,B), (A,E) (A, B, E, D, C, F)

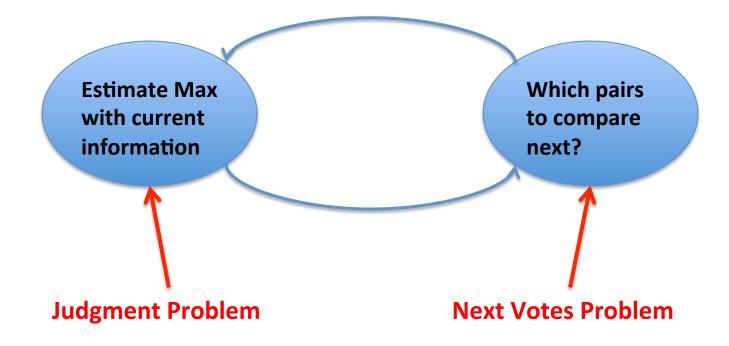


Greedy Vote Selection

- Sort objects by s(i)
- s(i) x s(j) for each pair
 (i,j)
- Select b pairs with highest s(i) x s(j)


(A, B, E, D, C, F)

- S=(1,1,0,0,-1,-1)
- ((A,B),(A,E),(A,D),(B,E)...)



Complete (Round Robin) Vote Selection

K = size of tournament
 b=6
 K=3
 (A, B, E, D, C, F)
 S=(1,1,0,0,-1,-1)
 ((A,B),(A,E),(B,E),(A,D),(B,D),(E,D))

Recap

Recap

- Judgment Problem
 - Maximum Likelihood
 (ML) baseline
 - Heuristic Strategies
 - Indegree
 - Local
 - PageRank
 - Iterative

- Next Votes Problem
 - Maximum Likelihood
 (ML) baseline
 - Heuristic Vote
 Selection Strategies
 - Paired
 - Max
 - Greedy
 - Round Robin